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Overview

Lie algebras are infinitesimal versions of continuous groups, and are
ubiquitous in all sorts of problems with continuous groups of symmetries,
in mathematics as well as in physics.

Over the complex numbers, the classification of simple Lie algebras by E.
Cartan and W. Killing is one of the most spectacular achievements of
19th century mathematics. Apart from the series of classical Lie algebras,
this classification exhibits five exceptional Lie algebras.

Are they the Ugly Duckling of the classification? Should we better forget
them? Or, on the contrary, are these unexpected symmetry groups the
source of some interesting and unexpected pieces of mathematics? This
is what I believe in, and I plan to illustrate this perspective inside
complex projective geometry. So the goals will be:

1 Explain the algebraic construction of exceptional Lie algebras from a
pair of normed algebras, this is the Tits-Freudenthal magic square.

2 Describe a geometric version of this magic square, and a couple of
related remarkable varieties.

3 Explain how they are related to some fundamental problems and
conjectures.
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A little bit of History

Felix Klein (1872): Erlangen’s program: classify geometries by their
symmetries.

Sophus Lie (1883): continuous transformations groups and their
linearization.

Wilhelm Killing (1888-1890): classification of simple Lie algebras.

Elie Cartan (doctoral dissertation, 1894).

The Cartan-Killing classification. Over the complex numbers, there
exist three (or four, or two, or one?) series of simple classical Lie
algebras:

sln, son, sp2n,

and five exceptional Lie algebras of dimensions 14, 52, 78, 133, 248:

g2, f4, e6, e7, e8.

−→ real forms, classifications over all sorts of fields, symmetric spaces,
graded Lie algebras, representation theory, spinors and quantum
mechanics, Kac-Moody Lie algebras, finite groups of Lie type, etc.
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What are the exceptional Lie algebras?

Exceptional Lie algebras are encoded in their Dynkin diagrams, that
encore their root systems, from which their structure can be
reconstructed:

If you do not know about root systems and so on, the simplest way to
define them is to provide models (here Z2-gradings):

g2 = sl3 ⊕ S2C3,
f4 = so9 ⊕ ∆,
e6 = sl2 × sl6 ⊕ C2 ⊗ ∧3C6,
e7 = sl8 ⊕ ∧4C8,
e8 = so16 ⊕ ∆+.
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Quaternions and Octonions

Obvious questions: what are really these Lie algebras? where do they
come from? what are they good for? Even g2 was mysterious, and Killing
thought he had found two different copies!

Quaternions. Discovered by Hamilton in 1843:

i2 = j2 = k2 = ijk = −1.

−→ four dimensional algebra over R, normed, associative but not
commutative. A quaternion q ∈ H is a linear combination

q = x + yi + zj + tk , x , y , z , t ∈ R.

Or course H ⊃ C, conjugation extends: q = x − yi − zj − tk , as well as
the norm |q|2 = qq = qq. The norm is multiplicative: |pq| = |p| × |q|.
Since k = ij one can write q = (x + yi) + (z + ti)j and see H = C⊕ C
with multiplication

(a, b)(c , d) = (ac − db, bc + da).

Cayley-Dickson doubling process ⇝ can we double H?
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Octonions. Discovered by Graves in 1843 and Cayley in 1845:
one gets O = H⊕H −→ eight dimensional algebra over R, normed, non
commutative, non associative but alternative.

e2 e6

e4e1 e5

e3

e7

The multiplication table of the octonions is a Fano plane, with seven
points and seven lines encoding the multiplication (with e0 = 1 the unit).
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One can try to double again but the process stops (one needs
associativity for the double algebra to be normed).

Theorem (Hurwitz 1898)

There exist only four real normed algebras (i.e. with a scalar product
which is multiplicative):

A = R, C, H, O.

Consider the automorphism groups

Aut(A) = {U ∈ SO(A), U(xy) = U(x)U(y) ∀x , y ∈ A}.

Theorem (Cartan 1914)

Aut(O) = G2 and der(O) = g2 is its Lie algebra.

Aut(R) = 1, Aut(C) = Z2, Aut(H) = SO3,

der(R) = 0, der(C) = 0, der(H) = so3.
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Spin and triality

Triality groups generalize automorphism groups:

Tri(A) = {(U1,U2,U3) ∈ SO(A)3, U1(xy) = U2(x)U3(y) ∀x , y ∈ A}.

The maps πi : Tri(A)−→SO(A) give three representations.

Theorem (Cartan 1925)

The group Tri(O) ≃ Spin8. Each projection πi is a twofold cover of SO8.
The 3 corresponding 8-dim’l representations of Spin8 are inequivalent.

The Dynkin diagram D4 is the only one with a threefold symmetry.

◦◦

◦

◦








J
J
J

O1

O2

O3

◦◦

◦

◦








J
J
J

V8

∆+

∆−

g2

The triality Lie algebras tri(A) = 0, ab2, sl
3
2, so8.
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Jordan algebras

Next step: in the 1950’s, when Chevalley and Schafer considered

H3(O) :=

{r1 x3 x2
x3 r2 x1
x2 x1 r3

 , ri ∈ R, xj ∈ O

}
.

The product A.B = 1
2 (AB + BA) is commutative but non associative.

The characteristic identity of Jordan algebras holds: A2(AB) = A(A2B).

Jordan algebras were introduced in the 1930’s by Jordan, von Neumann
and Wigner as a natural mathematical framework for quantum theory.

Any associative algebra is Jordan for the product a.b = 1
2 (ab + ba). A

Jordan algebra is exceptional if it cannot be embedded as a Jordan
subalgebra of an associative algebra. H3(O) is exceptional.

Theorem (Chevalley-Schafer 1950)

Aut(H3(O)) = F4, with Lie algebra der(H3(O)) = f4.
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The Tits-Freudenhal magic square

Now consider a pair (A,B) of normed algebras and define

g(A,B) := derA× derH3(B)⊕ (ImA⊗ H3(B)0),

where H3(B)0 ⊂ H3(B) is the hyperplane of traceless matrices.

One can define a Lie algebra structure on g(A,B), with derA× derH3(B)
a Lie subalgebra acting on ImA⊗ H3(B)0 in a natural way. The result of
this construction is the Freudenthal-Tits magic square of Lie algebras:

R C H O
R sl2 sl3 sp6 f4
C sl3 sl3 × sl3 sl6 e6
H sp6 sl6 so12 e7
O f4 e6 e7 e8

⇝ uniform description of the exceptional Lie algebras.
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Folding

Note the first two lines are related, as visible on the Dynkin diagrams:

×

In terms of the cubic Jordan algebras H3(A), one can define a
determinant Deta, where a = dimRA, and then the groups

SL3(A) := {g ∈ SL(H3(A)), g∗Deta = Deta},
SO3(A) := {g ∈ SL3(A), g(I ) = I}.

This last group preserves the quadratic from Q = ∂IDeta.
The Lie algebras so3(A) ≃ g(A,R) ⊂ sl3(A) ≃ g(A,C). There is a
decomposition

sl3(A) = so3(A)⊕ H3(A)0,

corresponding to a Lie algebra symmetry or Z2-grading.
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A variant with triality

It is amazing that g(A,B) has a natural Lie algebra structure, but also
the symmetry of the square appears to be miraculous.

A more symmetric variant of the Tits-Freudenthal construction was found
by Vinberg in 1966, and rediscovered by several people (Allison,
Dadok-Harvey, Barton-Sudbery, Landsberg-M.).

Let (A,B) be normed algebras, with the three actions of their triality Lie
algebras tri(A) and tri(B). There is a natural Lie algebra structure on

g(A,B) = tri(A)× tri(B)⊕ (A1 ⊗ B1)⊕ (A2 ⊗ B2)⊕ (A3 ⊗ B3).

Of course tri(A)× tri(B) is a Lie subalgebra, acting on Ai ⊗ Bi in the
natural way. The bracket of a1 ⊗ b1 ∈ A1 ⊗ B1 with a2 ⊗ b2 ∈ A2 ⊗ B2

is simply a1a2 ⊗ b1b2, considered as an element of A3 ⊗ B3.

⇝ Z2 × Z2 grading on g(A,B), starting from

g(A,R) = tri(A)⊕ A1 ⊕ A2 ⊕ A3.
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Dimension formulas

Let a = dim(A) and b = dim(B), so a, b ∈ {1, 2, 4, 8}.

dim g(A,B) = 3
(ab + 2a+ 2b)(ab + 4a+ 4b − 4)

(a+ 4)(b + 4)
.

Why is this formula true?? First discovered by Vogel for the exceptional
series B = O, using diagrammatic/categorical methods:

der(O) ⊂ tri(O) ⊂ g(R,O) ⊂ g(C,O) ⊂ g(H,O) ⊂ g(O,O)
|| || || || || ||
g2 so8 f4 e6 e7 e8

Let a = −1 for sl3, a = − 2
3 for g2, a = 0 for so8, then (Deligne-Vogel)

dim g(A,O) = 2
(3a+ 7)(5a+ 8)

(a+ 4)
.

⇝ Deligne computed many other more complicated dimension formulas
for components in ∧kg(A,O), Skg(A,O), etc.

Laurent Manivel The magic square



Is there a universal Lie algebra?

Could be the top of an iceberg?
Vogel discovered that one can associate to any simple Lie algebra g a
triple of numbers (α, β, γ) (up to order and scale), such that

dim g =
(α− 2t)(β − 2t)(γ − 2t)

αβγ

where t = α+ β + γ.
They are interpreted as eigenvalues of a Casimir operator.
Then all the parameters of the complex simple Lie algebras belong to
only three lines:

SL α+ β = 0,
OSP α+ 2β = 0,
EXC 2α+ 2β = γ.

⇝ uniform dimension formulas, uniform decompositions into irreducibles
⇝ categorical interpretations? universal Lie algebra??
⇝ uniform geometries!!
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Remark. The magic square can partly be extended to higher rank:

R C H
R son sln sp2n
C sln sln × sln sl2n
H sp2n sl2n so4n

⇝ Jordan algebras of higher rank,
⇝ uniform geometries of classical types,
⇝ classification of Scorza varieties (Zak).

But the exceptional line coming from the octonions is the most
interesting one!
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Starter: the geometry of G2

Recall the multiplication table of O:

e2 e6

e4e1 e5

e3

e7

You can choose e1 = any vector of unit norm, then e2 = any vector of
unit norm and orthogonal to e1. Then let e3 = e1e2, it has unit norm and
is orthogonal to e1, e2. Finally choose e4 of unit norm, orthogonal to
e1, e2, e3, and let e5 = e4e1, e6 = e4e2, e7 = e4e3: you get the correct
multiplication table.

Consequence: Over R, G2 acts transitively on vectors of unit norm, hence
on lines (and also on planes). In fact

S6 ≃ G2(R)/SU3.
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Now we switch to C and still denote O = O⊗R C, G2 = G2(C).
⇝ There exist octonions of norm zero! 2-dim’l spaces of such octonions!!
Even worse, planes on which all the octonionic products are zero!!!!
We call them null-planes. They are parametrized by a closed subvariety
G2Gr(2, 7) ⊂ Gr(2, 7), with transitive action of G2 ⇝ incidence diagram:

G2/B

P1

))RRR
RRR

RRR
RRR

RRR
P1

vvmmm
mmm

mmm
mmm

m

P(ImO) ⊃ Q5 = G2/P1 G2/P2 = G2Gr(2, 7) ⊂ P(g2)

⇝ subdiagram of the familiar incidence diagram for lines and planes:

Fl(1, 2, 7)

P1

))TTT
TTTT

TTTT
TTTTP5

wwooo
ooo

ooo
oo

P(ImO) = P6 Gr(2, 7) ⊂ P(∧2ImO) = P(so7)

⇝ one-dim’l family of null-planes through a given isotropic line ≃ v3(P1).
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This already contains a lot of information about g2:

1 ImO and g2 are the two fundamental representations.

2 Q5 and G2Gr(2, 7) are the two generalized Grassmannians: the two
minimal orbits in the (projectivized) fundamental representations.

3 A kind of ID for g2! We can recover G2 = Aut(G2Gr(2, 7)).

4 Q5 and G2Gr(2, 7) have same dimension and Betti numbers as P5.
In particular Pic = ZH but with H5 = 2, resp. H5 = 18, H5 = 1.

5 Q5 and G2Gr(2, 7) are both Fano, of index 5, resp. 3. By
adjunction, a codimension three linear section of G2Gr(2, 7) is a
surface with trivial canonical bundle, in fact a K3 surface.

Theorem (Mukai)

A general polarized K3 surface of degree 18 can be obtained like this.

6 G2Gr(2, 7) ⊂ P(g2) is an example of adjoint variety, a closed
Aut(g)-orbit inside P(g) for g a simple complex Lie algebra.
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Over R, we have seen that G2(R) acts transitively on imaginary
octonions of norm one, and S6 ≃ G2(R)/SU3. Over C, this cannot be
true since there exist octonions of norm zero, but

P(ImO)−Q5 ≃ G2/SL3.

⇝ P6 = P(ImO) compactifies the homogeneous space G2/SL3.
The embedding of SL3 in G2 is given by the long roots of g2:

-�
�
��

A
A
AU

� A
A
AK

�
�
��

6

�
����*

H
HHHHY

?

HH
HHHj

��
����

This gives a geometric model for the isomorphism g2 ≃ sl3 ⊕ S2C3.
⇝ In the sequel, we will give geometric incarnations of the algebraic
models provided by the magic square.
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The Abuaf-Ueda flop

Let us come back to the fundamental incidence diagram

G2/B

P1

p2 ))RRR
RRR

RRR
RRR

RRR
P1

p1vvmmm
mmm

mmm
mmm

m

P(ImO) ⊃ Q5 = G2/P1 G2/P2 = G2Gr(2, 7) ⊂ P(g2)

The Picard group of G2/B is generated by pull-backs of line bundles from
both sides ⇝ minimal ample line bundle L = O(1, 1). We have

p1∗L = C∨(1), p2∗L = N∨(1).

In general, if E→X is a vector bundle, then OE (−1)
p→ P(E ) is such that

Tot(OE (−1))→Tot(E ) is the blow-up of the zero section. Here we get
the Abuaf-Ueda flop

Tot(L∨)

&&NN
NNN

NNN
NNN

xxppp
ppp

ppp
p

Tot(C (−1))
flop //_________ Tot(N(−1))oo_ _ _ _ _ _ _ _ _
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More concretely, consider a general section s of L over G2/B. If defines a
section s1 of C∨(1) over G2/P1 and a section s2 of N∨(1) over G2/P2.
⇝ Z (s1) and Z (s2) are two CY-threefolds and there is a diagram

Z (s)
BlZ(s1)

{{ww
ww
ww
ww BlZ(s2)

##G
GG

GG
GG

G

G2/P1 G2/P2

Facts.

The Abuaf-Ueda flop Tot(C (−1)) 99K Tot(N(−1)) induces an
equivalence of derived categories (Ueda 2019, Hara 2021).

The two Calabi-Yau threefolds Z (s1) and Z (s2) are derived
equivalent (Kuznetsov 2016), but not isomorphic and even not
birationally equivalent.

Z (s2) is a flat deformation of a linear section of G (2, 7)
(Ito-Inoue-Miura 2019), for which we already have the
Pfaffian-Grassmannian derived equivalence with a linear section of
the Pfaffian variety Pf7 ⊂ P(∧2V7) (Borisov-Caldararu 2006).
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In the Grothendieck ring of varieties, [Z (s1)] ̸= [Z (s2)] but

([Z (s1)]− [Z (s2)]).L = 0,

where L denotes the class of the affine line. In particular L is a
zero-divisor (first example by Borisov 2018).

Recall the Grothendieck ring of varieties is generated by symbols [Z ], for
Z a quasi-projective variety, with relations [Z \W ] = [Z ]− [W ] when
W ⊂ Z , and [X × Y ] = [X ]× [Y ]. From the fact that Z (s) is a blow-up
in two ways, we get that

[G2/P1] + [Z (s1)].L = [Z (s)] = [G2/P2] + [Z (s2)].L.

Moreover, it follows from the Bruhat decomposition that, as P5, the two
fivefolds G2/P1 and G2/P2 admit cell-decompositions with only one cell
in each dimension from 0 to 5. Hence

[G2/P1] = [G2/P2] = 1 + L+ L2 + L3 + L4 + L5.

Finally [Z (s1)] = [Z (s2)] would imply that Z (s1) and Z (s2) are stably
birational, hence birational, hence isomorphic since they are CY; a
contradiction since in general their Picard groups are generated by line
bundles of different volumes.
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The Tits-Freudenhal magic square: Geometry

Recall how we constructed the magic square: for a pair (A,B) of normed
algebras we let

g(A,B) := t(A)× t(B)⊕ (A1 ⊗ B1)⊕ (A2 ⊗ B2)⊕ (A3 ⊗ B3).

There is a natural Lie bracket on g(A,B). One obtains the magic square
of Lie algebras:

R C H O
R so3 sl3 sp6 f4
C sl3 sl3 × sl3 sl6 e6
H sp6 sl6 so12 e7
O f4 e6 e7 e8

⇝ This construction has a geometric counterpart. Main features:

each line embodies a certain type of geometry, with points, lines,
etc. parametrized by homogeneous spaces,

lines are naturally related.
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A brief review of homogeneous spaces

Let G be simple complex Lie group. A G -homogeneous space is (in these
lectures) a complex projective variety X with a transitive action of G . So
X ≃ G/P for some subgroup P which is called a parabolic subgroup of G .

Example. G = PGLn+1 acts transitively on projective space Pn. Also on
the Grassmannians G (k , n + 1), 1 ≤ k ≤ n, and the flag manifolds
Fl(k1, . . . , kp, n + 1) parametrizing flags Vk1 ⊂ · · · ⊂ Vkp ⊂ Cn+1 of
subspaces of dimensions k1 < · · · < kp ≤ n. There are projections

Fl(k1, . . . , kp, n + 1)

ttiiii
iiii

iiii
iiii

**UUU
UUUU

UUUU
UUUU

UU

xx &&G (k1, n + 1) G (kp, n + 1)

⇝ maximal G -homogeneous space Fl(1, 2, . . . , n, n + 1) = SLn+1/B,
where B is the group of upper triangular matrices (a maximal solvable
subgroup) + minimal G -homogeneous spaces G (k , n + 1).
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Classification of G -homogeneous spaces

G -homogeneous spaces are classified, up to G -isomorphisms, by subsets
of the Dynkin diagram ∆ of G .

Usual notation I ⊂ ∆⇝ G/PI . In particular I = ∆⇝ G/B full flag
manifold, I = ∅⇝ {pt}, I = {i}⇝ G/Pi generalized Grassmannian.

Examples.

G (3, 7), Fl(3, 6, 7, 9)

OG (3, 13), OFl(3, 6, 7, 17)

IG (3, 12), IFl(3, 6, 7, 16)

OG (3, 12), OFl(3, 6, 8, 16)

These are isotropic (or classical) Grassmannians and isotropic flag
manifolds ⇝ parametrize subspaces that are isotropic with respect to a
non degenerate quadratic form (types B,D) or a symplectic form (type C).
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Special attention is required for spinor varieties, which parametrize the
two families of maximal n-dimensional istropic spaces in C2n.

= OG (6, 12)+ ≃ OG (6, 12)− =

The other G -Grassmannians for G = SO12 are

= OG (1, 12) = Q10, = OG (2, 12)

= OG (3, 12), = OG (4, 12).

Note that OG (5, 12) = is not a generalized Grassmannian!

Fact: There is a G -morphism G/PI→G/PJ if and only if I ⊃ J.

For example OG (5, 12)→OG (6, 12)±. In words, a five dimensional
isotropic space V5 = V+

6 ∩V−
6 for unique isotropic V±

6 from OG (6, 12)±.
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Fact: In general Aut(G/PI )
o ≃ Gad = G/Z (G ) ⇝ can recover g.

Exceptions: ≃ , Aut = PSO12 ̸= PSO11!

We have already seen the case of G2: Aut(Q5) = PSO7 ̸= G2!

''NN
NNN

NNN
NNN

yyttt
ttt

ttt

Q5 = = G2G (2, 7)

Fact: G/PI has a minimal projective G -embedding G/PI ↪→ P(VωI
),

where VωI
is an irreducible G -representation (requires π1(G ) = 1).

In particular the generalized Grassmannians G/Pi ↪→ P(Vωi ), where the
Vωi are the fundamental representations. ⇝ can recover the whole
representation theory of G !

Example: G = SLn+1, then Vωi = ∧iCn+1 yields the Plücker embedding

G (i , n + 1) ↪→ P(∧iCn+1).
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Example: G = SOm or Spm, then G/Pi is an isotropic Grassmannian and
the minimal G -embedding is the restriction of the Plücker embedding:

G/Pi
//

��

P(Vωi )

linear

��
G (i ,m) // P(∧iCm).

Example: Caveat! This is not true for spinor varieties!

OG (n, 2n)± //

��

P(∆±)

quadratic

��
G (n, 2n) // P(∧nC2n).

The representations ∆+ and ∆− are called half-spin representations of
the spin group Spin2n, the universal (degree two) cover of SO2n. Their
dimension is 2n−1.
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Conversely, given a G -representation V , the action of G on PV admits
(at least) one orbit X of minimal dimension. Since the boundary of X
must be a union of G -orbits of smaller dimension, it is empty. In other
words, X is closed, hence projective and G -homogeneous. If V is
irreducible, X is unique.

Example: adjoint varieties.
If g is a simple Lie algebra, the adjoint action of G = Aut(g) on g gives
an irreducible representation. The unique closed orbit inside P(g) is
called the adjoint variety of g and will be denoted G ad .
For the classical types we get:

An Bn Cn Dn

Fl(1, n, n + 1) OG (2, 2n + 1) v2(P2n−1) OG (2, 2n)

Two pathologies: for An we don’t get a Grassmannian! For Cn we do,
but not in the minimal embedding.
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Back to the magic square.

R C H O
R so3 sl3 sp6 f4
C sl3 sl3 × sl3 sl6 e6
H sp6 sl6 so12 e7
O f4 e6 e7 e8

Here is the geometric version:

R C H O
R v4(P1) Fl(1, 2, 3) IG (2, 6) OP2

0

C v2(P2) P2 × P2 G (2, 6) OP2

H IG (3, 6) G (3, 6) OG (6, 12)+ E hs
7

O F ad
4 E ad

6 E ad
7 E ad

8
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We can even complete it to a magic triangle (Deligne-Gross):

− 2
3 0 1 2 4 8

v2(P1) Fl(1, 2, 3) IG (2, 6) OP2
0

3pts v2(P2) P2 × P2 G (2, 6) OP2

v3(P1) (P1)3 IG (3, 6) G (3, 6) OG (6, 12)+ E hs
7

G ad
2 SOad

8 F ad
4 E ad

6 E ad
7 E ad

8

First observations. Recall that each space X i
a = G/P from the i-th row

comes with a homogeneous embedding inside PV i
a for some irreducible

G -representation V i
a .

dimX 2
a = dimX 1

a + 1 = 2a, dimV 2
a = dimV 1

a + 1 = 3a+ 3,

dimX 3
a = 3a+ 3, dimV 3

a = 6a+ 8,

dimX 4
a = 6a+ 9, dimV 4

a = dim g(A,O) = 2
(3a+ 7)(5a+ 8)

a+ 4
.
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The first two rows

Spaces from the first row are hyperplane sections of spaces from the
second row. Those are projective planes over normed algebras:

X 2
a ≃ AP2.

These spaces are embedded quadratically. A dense open subset is the
image of the map

(x , y) ∈ A2 7→

1 x y
x xx yx
y xy yy

 ∈ H3(A).

The space X 2
a parametrizes rank one matrices inside H3(A). Summing

two rank one matrices yields a rank two matrix, characterized by the
vanishing of

Deta(M) =
1

3
tr(M3)− 1

2
tr(M)tr(M2) +

1

6
tr(M)3.

This formula does make sense even over O!

Laurent Manivel The magic square



Alternatively, one can think of the cubic Ca = (Deta = 0) as the
projective dual hypersurface to X 2

a , parametrizing tangent hyperplanes to
X 2
a as points inside the dual projective space.

Conversely the derivatives of the determinant yield a birational map

Ia
BlAP2

||xx
xx
xx
xx
x

BlAP2∗

##G
GG

GG
GG

GG

PH3(A)
∂Deta //_______ PH3(A)∨

The first two instances (a = 0, 1) are well-known:

I0

����
��
��
�

��?
??

??
??

I1

����
��
��
�

��?
??

??
??

P2 //_______ P2 P5 //_______ P5

∂Det0 : [r , s, t] 7→ [st, tr , rs] is the classical Cremona transformation.
I1 is the blow-up of the Veronese surface in P5 ⇝ space of complete
conics, instrumental in Schubert’s proof that there exist exactly 3264
conics tangent to 5 given general conics.
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These birational maps have very special properties:

1 Polynomials whose derivatives define birational maps are called
homalöıdal polynomials, they are extremely special.

2 Ia contains two exceptional divisors, contracted on both sides. The
complement is the open orbit of the group action.

3 A fiber over M ∈ AP2
∗ is a copy of Pa+1, that meets AP2 along a

quadric QM ≃ Qa.
4 These quadrics behave like lines (A-lines) in a plane projective

geometry: in general,

two A-lines meet at a single point,
two given points are joined by a unique A-line.

5 The four varieties X 2
a = AP2 are the four Severi varieties: the only

smooth X 2m ⊂ P3m+2 whose secant varieties are not the full space.
According to Zak, this is impossible in Pn for n < 3m + 2.
⇝ Hartshorne’s conjecture on complete intersections.
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From X 2
a = AP2 we deduce X 1

a = AP2
0 by taking a hyperplane section

with PH3(A)0, the space of traceless matrices. Its automorphism group is
Aut(H3(A)), that Identifies with SO3(A).

This can be interpreted as restricting a plane projective geometry to an
elliptic geometry. Recall that in terms of Lie algebras, this is interpreted
as folding the Dynkin diagram

Alternatively, this amounts to passing from SL3(A) to SO3(A), and

sl3(A) = so3(A)⊕ H3(A)0.
Remark. The quadrics that defines ”lines” in X 2

a = AP2 can be seen as
entry loci: any P ∈ Sec(X 2

a )− X 2
a belongs to infinity many secant lines,

and the intersection points of these lines with X 2
a are parametrized by a

a-dimensional quadric QP .
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Varieties of reductions

Similarly, a point P /∈ Sec(X 2
a ) belongs to infinitely many trisecant

places. Projecting from P = I to traceless matrices we get infinitely many
trisecant lines to X 2

a ⊂ PH3(A)0. Hence a subvariety Za ⊂ G (2,H3(A)0).

Theorem (Iliev-M. 2005)

Za is a smooth Fano manifold of dimension 3a, Picard number one and
index a+ 1, that compactifies C3a.
The action of SO3(A) on Za has four orbits, and the open orbit

Z 0
a ≃ SO3(A)/T (A)⋊ S4.

Moreover Za is covered by linear space of dimension a, and there are
exactly three of them passing through each point of Z 0

a . These three
spaces are transverse and yield a decomposition of the tangent space as

so3(A)/t(A) ≃ A1 ⊕ A2 ⊕ A3.

Hence a geometric incarnation of the triality model for g(A,R) = so3(R)!
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The third row of the Magic Square

Freudenthal defined for the third line a synthetic geometry modeled on
symplectic geometry in five dimensions ⇝ points, isotropic lines and
isotropic planes. Points are parametrized by adjoint varieties. Planes are
parametrized by X 3

a of dimension 3a+ 3.

Points

Lines

Planes

Up to isomorphisms, two different planes have only three possible relative
positions. They are called incident when the corresponding points are
joined by a line contained in X 3

a .
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Intermezzo: lines in homogeneous spaces

A line in a Grassmannian G (k , n) is defined by fixing spaces Uk−1,Uk+1

and considering the Vk ’such that Uk−1 ⊂ Vk ⊂ Uk+1. In particular the
Hilbert scheme (or Fano variety) of lines in G (k , n) is homoegeneous:

F1( ) = .

This is a general recipe:

Theorem (Landsberg -M. 2003)

The space of lines in a generalized Grassmannian G/Pi is (in general)
G -homogeneous, and its diagram is obtained by replacing the vertex i by
the adjacent ones.

F1( ) = , F1( ) = .

Beware there are some exceptions, but always true in type ADE. (In types
BC one sometimes get Hilbert schemes of lines with two orbits.)
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By induction, this extends to the Fano varieties Fk parametrizing copies
of Pk inside G/Pi : one needs to isolate copies of .

F3( ) = ∪ ∪ .

This works specially well if we start from a homogeneous space G/Pend

where Pend is defined by a vertex situated at the end of an arm of the
Dynkin diagram: we can recover the G -Grassmannians encoded by
vertices on the whole arm, as Hilbert schemes of linear spaces. Typically

F2( ) = F1( ) = F2( ) = .

This is also true at the level of representations: starting from
G/Pend ⊂ P(Vend), one gets

G/Pk = Fk−1(G/Pend) ⊂ G (k ,Vend) ⊂ P(∧kVend)

so the k-the fundamental representation is a component of ∧kVend ⇝
the most important representations are those of the form Vend !
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More generally, there is a theory of Tits shadows: when G/PI→G/PJ is
a projection, ie I ⊃ J, the fiber is a homogeneous space (of a smaller
semisimple group) whose diagram is obtained by suppressing the vertices
that belong to J. Typically:

=P1

p1xxppp
ppp

ppp
pp

=OP2

p2 &&NN
NNN

NNN
NNN

The fibers of p1 are P1’s, mapped by p2 to lines in X 4
8 = E7/P7.

The fibers of p2 are copies of OP2 = X 2
8 parametrizing lines in E7/P7

passing through a given point.

What is not always (but often) true is that any copy of PJ/PI in G/PI is
a fiber of this projection map.
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Consequence

The space of lines in X 4
a passing through a given point is a copy of X 2

a .

Conversely, we can reconstruct X 4
a from X 2

a . Recall the latter is AP2, the
space of rank one elements in PH3(A). This is also the singular locus of
the space of elements of rank at most two, which is the cubic (Deta = 0).

Theorem (Integrating the cubic)

X 4
a ⊂ PZ (A) is the (closure of the) image of the cubic map

M ∈ H3(A) 7→ [1,M, ∂Deta(M),Deta(M)] ∈ PZ (A),

where Z (A) = C⊕ H3(A)⊕ H3(A)∨ ⊕ C admits a natural symplectic
structure, invariant under Aut(X 4

a ).

Guess the symplectic structure! And deduce that X 4
a is Legendrian: each

affine tangent space is a Lagrangian subspace of Z (A). Mukai: twisted
cubics over Jordan algebras.
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For a = − 2
3 , M is just a scalar and we get a rational cubic in P3:

X 4
− 2

3
= v3(P1), X 4

0 = P1 × P1 × P1.

This is a geometric incarnation of folding!
Moreover the twisted cubic curve has the nice property that its tangent
developpable is a quartic surface in P3. For P1 × P1 × P1 ⊂ PM2,2,2,
where M2,2,2 = C2 ⊗ C2 ⊗ C2 is the space of cubic matrices, we have
Cayley’s hyperdeterminant

HDet(A) = a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011

−2a000a001a110a111 − 2a000a010a101a111 − 2a000a011a100a111
−2a001a010a101a110 − 2a001a011a110a100 − 2a010a011a101a100
+4a000a011a101a110 + 4a001a010a100a111.

Hyperdeterminants are equations of dual varieties, but here these are the
same as the tangent varieties, because of the Legendrian property.
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Remarkably, these properties propagate to the whole row X 4
a ⊂ PZ (A).

The tangent variety is always a quartic hypersurface, with a singular
locus Wa ⊃ X 4

a of dimension 5a+ 4.
The equation HDeta of the quartic hypersurface admits a uniform
expression, independently of a.
The string

X 4
a ⊂ Wa ⊂ Tan(X 4

a ) ⊂ PZ (A)

is the full stratification into orbit closures of Aut(X 4
a ).

Theorem

X 4
a has the OADP property (one apparent double point property).

So a general point of PZ (A) belongs to a unique secant line to X 4
a

+ same property for tangent lines (≃ identifiability).
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A flop

For a = 2 we can easily give representatives of the orbits:

G (3, 6) e1 ∧ e2 ∧ e3
W2 e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5
TanG (3, 6) e1 ∧ e2 ∧ e4 + e2 ∧ e3 ∧ e5 + e3 ∧ e1 ∧ e6
PZ (C) e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6

An element of W2 determines a line and a hyperplane. Hence the
following resolutions of singularities:

P(∧2Q)

yysss
sss

sss
s

�� %%KK
KKK

KKK
KK

yysss
sss

sss
s

%%KK
KKK

KKK
KK

P(∧2Q)

�� %%LL
LLL

LLL
LLL

%%LL
LLL

LLL
LLL

Fl(1, 5, 6)

yyrrr
rrr

rrr
rr

%%LL
LLL

LLL
LLL

P(∧2H)

yyrrr
rrr

rrr
rr

yyrrr
rrr

rrr
rr

��
P5 W2 P̌5

Question. Is the flop P(∧2Q) 99K P(∧2H) a derived equivalence?
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The fourth row

Freudenthal’s metaplectic geometries: four types of elements + incidence
conditions. All modeled on the geometry of F4 and the four
F4-Grassmannians.

Points

Lines

Planes

Symplecta

By fixing a point, looking at lines-planes-symplecta through this point,
and projectivizing, one obtains the symplectic geometries from the third
line. In particular, the space of lines in X 8

a passing through a given point
is isomorphic to X 4

a .
Also each symplex is an adjoint variety for the Lie algebras g(A,H) of the
third line.
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Contact structures

Recall that an adjoint variety G ad is the unique closed G -orbit inside Pg,
where g is a simple complex Lie algebra and G = Aut(g).

Example. Aad
n ≃ Fl(1, n, n + 1) = (Pn × Pn) ∩ H is a variety of partial

flags. At a point f = (V1 ⊂ Vn), the cotangent space is

ΩFl,f = {X ∈ sln+1, X (Cn+1) ⊂ Vn, X (Vn) ⊂ V1, X (V1) = 0}.

It contains the line L∨f = {X ∈ sln+1, X (Cn+1) ⊂ V1, X (Vn) = 0}.
Hence an exact sequence

0→H→TFl→L→0.

This defines a contact distribution = a distribution of tangent
hyperplanes in a variety X which is maximally non integrable, in the
sense that the induced linear map

∧2H ↪→ ∧2TX
Lie−→ TX−→L

defines at every point a non degenerate skew-symmetric form on H. In
particular KX = −(n + 1)L if X has dimension 2n + 1.
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This contact structure comes from the famous Kostant-Kirillov-Souriau
symplectic form on a coadjoint orbit O ⊂ g∨. If λ ∈ O has stabilizer
H ⊂ G , then TλO ≃ g/h and one can let

ωλ(X ,Y ) = λ([X ,Y ]).

This is well-defined, closed and non-degenerate: coadjoint orbits are
(open) symplectic manifolds.

When g is complex semisimple, then g∨ ≃ g has finitely many nilpotent
orbits, which are (open) holomorphic symplectic manifolds. In particular
the nilpotent cone is a symplectic singular variety N , which can be
resolved by the Springer resolution Tot(ΩG/B)→N .

At the other extreme there is a unique minimal nilpotent orbit Omin,
which is smooth outside the origin. This is a cone and the adjoint variety

G ad ≃ POmin.

One can show that any line is a contact line. This explains the
discrepancy between

dimX 8
a = 6a+ 9 and dimZ (A) = 6a+ 8.
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Summary

1 We defined the magic square of Lie algebras g(A,B). Each row can
be seen as an expansion of the triality Lie algebra t(A).

2 We defined a geometric version where each row exhibits a special
kind of geometry (elliptic, plane projective, symplectic, metaplectic).

3 Elements of these geometries are parametrized by homogeneous
spaces (1,1+1,3,4). In particular there is a prefered variety X b

a ,
whose dimension is linear in a.

4 Remarkable properties of these spaces propagate on each row
(hyperplane sections, Severi, Legendrian or contact varieties).

5 Reduction: one gets a row from the next one by looking at lines
through a given point.

6 Integration: one gets a row from the previous one by a suitable
rational map.

⇝ Extraspecial or typical??
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VMRTs

Complex birational geometry stressed the importance of rational curves
contained in projective manifolds: Fano manifolds always contain (many)
rational curves; when a birational morphism which is not an isomorphism,
it has to contract some rational curve.

⇝ It is very important to understand families F of rational curves,
especially the covering ones, that pass through any general point.
To simplify: consider curves of minimal degree (with respect to some
polarization), so that they cannot break into simpler curves.
To simplify further: try to understand the tangent directions to such
curves at a general point x ∈ X .

⇝ VMRT (variety of minimal rational tangents) Cx ⊂ PTxX .

In our setting, X = G/P a generalized Grassmannian, Pic(X ) = ZH, the
polarization H induces the minimal embedding G/P ↪→ PV , rational
curves of minimal degree are lines, parametrized by F1(G/P) always a
covering family. Moreover lines are identified with their tangents, so
X 7→ Cx is exactly our reduction process!!
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The LeBrun-Salamon Conjecture

For any smooth variety X , the total spaces of the cotangent bundle ΩX

has a natural symplectic structure ω = dθ, where θ is the tautological
Liouville-Poincaré one-form ⇝ P(ΩX ) has a canonical contact structure.

Other examples: adjoint varieties G ad ⊂ Pg.
Note that P(ΩPn) ≃ Fl(1, n, n + 1) belongs to both types.

LeBrun-Salamon Conjecture

If a contact manifold Y is Fano, then Y ≃ G ad for some simple group G .

Known in small dimension, but wide open in general.

Theorem (Druel 1998)

If Y is contact Fano of dimension five and Picard number one, Y ≃ G ad
2 .

Theorem (Kebekus-Peternell-Sommese-Wisniewski 2000)

If a contact manifold Y has KY not nef, then either Y ≃ P(ΩX ) for some
variety X , or Y is Fano with Picard number one.
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If Y is Fano and not a projective space, than the contact line bundle
L = TY /H generates the Picard group and Y is covered by contact lines
(rational curves on which L has degree one).
Let Cy be the contact VMRT at a general point y ∈ Y .

Theorem (Kebekus 2001)

Cy ⊂ P(Hy ) is smooth and Legendrian.

⇝ Can we understand Legendrian varieties? Are there many? We already
know the varieties X 4

a from the third line of the magic square (= twisted
cubics over Jordan algebras).

Theorem (Legendrian reduction, Buczynski 2008)

Let V be a symplectic space, and suppose Z ⊂ P(V ) is Legendrian. Let
H ⊂ P(V ) be a general hyperplane, with orthogonal line h ⊂ H. Then
H/h is again symplectic, and the projection of Z ∩ H from [h] to P(H/h)
is again Legendrian.

⇝ easy construction of many smooth Legendrian varieties! Nevertheless
those we are interested in are special.
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Theorem (Buczynski 2006)

Let Z ⊂ P(V ) be Legendrian, and cut out by quadrics. Then Z is
homogeneous.

⇝ either Z is a twisted cubic over a Jordan algebra when the Picard
number is one, or

Z = P1 ×Qn−1 ⊂ P2n+1.

Idea: Z is homogeneous under G with Lie algebra

g ≃ I2(Z ) ⊂ S2V∨ ≃ sp(V ).

General principle: can recover (parts of) the Lie algebra structure from
the geometry.

What about the next Legendrian varieties? Remember that X 4
a can be

constructed as the image of

[t,X ] 7→ [t3, t2X , tcom(X ), det(X )] ∈ PZ (A).

The hyperplane section X (A) obtained as the image of
H = (t3 = det(X )) is smooth and preserved by the action of SL3(A).
Moreover the image of [1, I ] is stabilized by SO3(A).
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Theorem (Ruzzi 2010)

The variety X (A) is a smooth compactification of the symmetric space
SL3(A)/SO3(A), with Picard number one.

The VMRT of X (A) is a general hyperplane section of X 2
a : a copy of X 1

a .

Example. A general hyperplane section of X 4
2 = G (3, 6) is a

compactification X (C) of SL3 × SL3/SL3 ≃ SL3, considered as a
symmetric space. A general hyperplane is H = (f123 − f456)

⊥ (recall the
OADP property!). The complement of SL3 is the intersection of the
Grassmannian with f ⊥123 ∩ f ⊥456 ⇝ intersection of two Schubert divisors;
singular along two copies of P2 × P2!

Problem. We have seen that the reduction process (=passing to the
VMRT) can be inverted in the setting of homogeneous spaces (by some
birational map, explicitly given by the equations of the VMRT). Is this
still true in the general setting of projective manifolds?
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Rigidity

Suppose X is a Fano manifold, then H2(X ,TX ) = 0 by Akizuki-Nakano
vanishing theorem ⇝ infinitesimal deformations are well-behaved. In
particular, if also H1(X ,TX ) = 0, any local deformation is constant
⇝ applies to any rational homogeneous space X = G/P.
What about large deformations = specializations?

Problem. Suppose X→∆ is a smooth projective family, with Xt ≃ X
for all t ̸= 0. Is X0 ≃ X? If yes, we say that X is rigid.

Theorem (Hwang-Mok)

Any rational homogeneous space X = G/P is rigid, with the unique
exception of B3/P2 = OG (2, 7).

Strategy. Reduce to rigidity of the VMRT: X0 must have the same
VMRT as X . Then X0 ≃ X . Lots of technicalities!
⇝ Series of papers from 1998 to 2005. Non ADE types are more difficult
since the VMRT is not always homogeneous.
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Theorem (Pasquier-Perrin 2010)

There exists a smooth family X→∆ with Xt ≃ OG (2, 7) for all t ̸= 0,
but X0 ̸= OG (2, 7).

In fact X0 is obtained as the Zariski closure of projectivization of the set{
x + x ∧ y , x , y ∈ ImO, [x , y ]null plane

}
In particular X0 ⊃ G2/P1 ∪ G2/P2 has at least three G2-orbits.
The complement is a C∗-bundle over G2/B: a horospherical variety.

P(O(−1, 0) ⊕ O(0,−1))

��

π // X0 ⊂ P(ImO ⊕ g2)

G2/B

((PP
PPP

PPP
PPP

PP

vvnnn
nnn

nnn
nnn

n

G2/P1 G2/P2

The morphism π blows-up the two closed orbits G2/P1 and G2/P2.
So X0 has Picard number one. On the other hand, the action of G2 on
OG (2, 7) has only two orbits, G2/P2 and its complement!
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Outside generalized Grassmannians, some results are known.

Theorem (Weber-Wisniewski 2018)

A generalized complete flag manifold G/B is always rigid.

If the Picard number is not maximal this is not true anymore.
For example F = Fl(1, 2, 4) has a non trivial degeneration. Indeed,
observe that F = PP3(Q) and that fixing a symplectic form one gets Q∨

as an extension by O(−1) by the null-correlation bundle N.
⇝ F degenerates to PP3(N ⊕O(1)).

Theorem (Qifeng Li 2022)

Suppose G/B→G/P is a P1-fibration. Then G/P is rigid, except if
G/P = Fl(1, 2, 4) or OFl(2, 3, 8).

The answer we should expect to the following question is unclear:

Question. Which G/P’s are not rigid?
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Similar strategies work for a few other quasi-homogeneous varieties.

Odd-symplectic Grassmannians. Recall IG (k , 2n) ⊂ G (k, 2n) is
the isotropic Grassmannian parametrizing k-dim’l subspaces of C2n,
isotropic w.r.t a non-degenerate symplectic form ω.

Easy fact

The VMRT is non-homogeneous for k < n.

Indeed a line in G (k, 2n) passing through a fixed Vk is defined by a flag
Uk−1 ⊂ Uk+1. We need Uk−1 ⊂ Vk ⊂ Uk+1 so if Vk is isotropic, Uk−1

must be isotropic and Uk+1 ⊂ U⊥
k−1. But this does not force Uk+1 to be

isotropic!
⇝ a two orbit variety, rather than homogeneous (in fact a scroll).
⇝ Needs to adapt the argument, but works essentially the same for
IG (k, 2n + 1).

Theorem (Park 2016)

Odd Lagrangian Grassmannnians IG (n, 2n + 1) are rigid.
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Odd symplectic Grassmannians are specially interesting because:

Their automorphism groups are the odd symplectic groups
Sp2n+1 = Sp2n ⋊C2n, which are not (semi)simple but behave very
much as if they were with respect to dimension or decomposition
formulas (Gelfand-Zelevinsky 1984, Proctor 1988), classical and
quantum cohomology (Mihai 2007, Perrin & al 2018)
⇝ nice specialization of the universal Lie algebra?

They are two-orbits varieties, the two orbits being distinguished by
the fact that an isotropic k-plane may or may not contain the kernel
of the skew-form
⇝ the closed orbit in IG (k , 2n + 1) is simply IG (k − 1, 2n).

⇝ Exceptional analogues: sextonions H ⊂ S ⊂ O lead to E7 1
2
and

singular versions of the Legendrian and Severi varieties.

Symmetric varieties. Recall the symmetric variety X (A) is not
homogeneous, but a general hyperplane section of the homogeneous
space X 4

a , with VMRT X 1
a also homogeneous.
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Theorem (Kim-Park 2019, Chen-Fu-Li 2022)

The symmetric varieties X (A) are rigid.

Surprisingly there are very few symmetric spaces of Picard number one. A
trivial example is Pn, considered as a compactification of the complement
of a smooth quadric, which is On+1/O1 ×On. Less trivial is OP2, seen as
a compactification of F4/Spin9 ⇝ homogeneous for a bigger group.

Theorem (Ruzzi 2010)

Suppose that X is a smooth symmetric space of Picard number one, not
homogeneous. Then X is either:

1 One of the four symmetric varieties X (A).
2 A Cayley Grassmannian.

3 A double Cayley Grassmannian.

Definition. Fix a general three-form ω ∈ ∧3V∨
7 , its stabilizer is

G2 ⊂ SL(V7). The Cayley Grassmannian is the variety CG ⊂ G (4,V7)
parametrizing four-planes on which ω restricts to zero.
⇝ Fano manifold of dimension 8, Picard number 1, index 4.
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Properties. (M. 2016)

CG is a compactification of G2/SL
s
2SL

ℓ
2, where SLs2 and SLℓ2 are the

two embeddings of SL2 in G2 defined by short and long roots.

CG parametrizes the subalgebras of O isomorphic to H, and their
degenerations.

CG is made of three G2-orbits, the closed one being Q5.

In we blow up the closed orbit, we get two invariant divisors E and
F with P2-bundle structures:

P(Sym2C )

��

≃ E ⊂ C̃G ⊃ F

��

≃ P(Sym2N)

��
Q5 CG G ad

2

Here C is the so-called Cayley bundle on Q5, which is G2-equivariant,
and N is the rank two tautological bundle on G ad

2 ⊂ G (2, 7).

The quantum cohomology is known (Benedetti-M. 2017).

The derived category has a Lefschetz collection (Guseva 2022).
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Definition. Consider the spinor variety OG (7, 14)+ ⊂ G (7, 14). The
Plucker line bundle restricts to L2 where L generates the Picard group.
This line bundle defines the spinor embedding

OG (7, 14)+ ↪→ P(∆+),

where ∆+ is one of the half-spin representations, of dimension 64. If U is
the restriction of the tautological rank seven bundle on G (7, 14), it has
no section but U ⊗ L is generated by global sections, and

H0(OG (7, 14)+,U ⊗ L) ≃ ∆−,

the other half-spin representation. Both ∆+ and ∆− have open orbits of
C∗ × Spin7. The double Cayley Grassmannian DG ⊂ OG (7, 14)+ is
defined as the zero-locus of a general section of U ⊗ L.

⇝ Fano manifold of dimension 14, Picard number 1, index 7.
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Properties. (M. 2020)

DG is a compactification of G2 = G2 × G2/G2.

DG parametrizes subalgebras of O⊗ C, the algebra of bioctonions.

DG is made of three G2 × G2-orbits, the closed one being Q5 ×Q5.

In we blow up the closed orbit, we get two invariant divisors E and
F with P3-bundle structures:

P(C ⊠ C )

��

≃ E ⊂ D̃G ⊃ F

��

≃ P(N ⊠ N)

��
Q5 ×Q5 DG G ad

2 × G ad
2

Questions.

What is the VMRT of DG? Is DG rigid?

What is its (quantum) cohomology ring? Its derived category?

What about O⊗H and O⊗O?

There should exist a nice compactification of the 128-dimensional
symmetric space that corresponds to the Z2-grading e8 = so16 ⊕∆+,
with automorphism group E8 ⇝ bioctonionic plane (O⊗O)P2??
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Tits shadows and hyperplane sections

A strong interest for homogeneous spaces comes from the fact that they
are one of the most basic sources of Fano manifolds: indeed they usually
have high index ⇝ can cut them by linear spaces or low degree
hypersurfaces, sometimes even by vector bundles, and keep the Fano
property. But we loose control, for example on automorphisms.

Basic question. Suppose X = G/P ∩ H is a hyperplane section of
G/P ⊂ P(V ). Is StabG (H)→Aut(X ) an isomorphism?

One can try the following strategy. Suppose G/P is covered by Pm’s, m
maximal ⇝ give Pm−1’s in X , except when they are themselves already
contained in H. Suppose G/P has the Unique Extension Property,
meaning that any Pm−1 is contained in a unique Pm. Then:

Proposition

The extension morphism Fm−1(X )−→Fm(G/P) is the blowup of Fm(X ).

⇝ Since any automorphism of X extends to Fm−1(X ) and Fm(X ), it also
extends to Fm(G/P), hence comes from G (in most cases)!

Laurent Manivel The magic square



Proposition

In the long case, the Unique Extension Property holds if G/P is neither
an orthogonal Grassmannian, nor the adjoint variety F ad

4 .

But then we can use Tits shadows to describe maximal quadrics:

HilbQ5(F ad
4 ) = F4/P4 = OP2 ∩ H0,

HilbQ8(OP2) = OP2.

We deduce that F ad
4 = F4/P1 and F4/P4 = OP2 ∩ H0 both have the

Unique Extension Property for quadrics. In the end we get:

Theorem (Benedetti-M. 2022)

Any element of Aut(X )0 can be lifted to Aut(G/P). But if G/P is itself
a hyperplane section of another G ′/P ′, not necessarily true for Aut(X )!

⇝ exceptions are related to Jordan algebras and the first two lines of the
magic square!
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