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A toy case: Rubik's cubes

We consider tensors of format 3 x 3 x 3: tensorsin R=V;® VL, ® V3

where Vi, V5, V3 are three-dimensional vector spaces, up to the action of

Theorem (Ng 1995, Bhargava-Ho 2013)

There is a bijection between nondegenerate G-orbits in R and collections
(C, Ly, Ly, L3) with C a genus one curve and Ly, Ly, L3 line bundles of
degree three on C such that L% = L, @ L3.

GIT quotient: consider Go = SL(V4) x SL(V2) x SL(V3). Then
R/ Gy ~ A3

is an affine space. More precisely the invariant ring R% ~ C[ls, Iy, h»] is
a polynomial ring over invariants of degrees 6,9, 12.
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Vinberg and Kac

Nice behavior explained by the fact that R=V; ® VL, ® V3 is a
theta-representation. Starting from affine Eg

i

and choosing the central vertex, Kac and Vinberg tell us we must get a
Zs-grading of eg, namely

ee = sl(V1) xsl(Vo) xsl(Vz3) @ (Vi@ Voa® V3) B (V1@ Vo ® V3)v

In this situation, the Gp-orbits in R = V; ® Vb, ® V3 can be classified
exactly as in Jordan theory. In a nutshell:

e semisimple and nilpotent elements + Jordan decompositions,

@ one can define Cartan subspaces ¢ C R, and every semisimple
element in R is conjugate to some element of a given ¢,

o the Weyl group W, := N(c)/Z(c) is a complex reflection group,
and this is why R//Go ~ ¢/ W, is an affine space.
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Cartan

So we fix a Cartan subspace ¢ = (hy, ha, h3) where

h = aa0bh®a+a®bh®o+a®b®c,
hy = a103bRca+a®b3®c +a3R b R o,
h3 = a103bRao+a®b®c+a3® b ®c.

Fact. W, is the complex reflection group Gos in the Shephard-Todd
classification, of order 648. This is a degree three extension of the
Hessian group = automorphism group of the Hesse pencil of plane cubics

Mu® 4+ v+ w?) — puvw = 0.
A generic r € R is equivalent to some r = uhy + vhy + whs € ¢. Consider
G = {[x] € P(V'), r(x,e,e) degenerate},
Ciz = {([x]. ]) € P(V') x P(Vy'), r(x,y,e) =0}

~~ 6 models of the same genus one curve C.
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Hesse

These 6 models are related by correspondences

Cio
Cl CZ

P(V) x P(V3) D G G C P(Vy') x P(Vy)
G

where all the arrows are isomorphisms. (But not commutative!)
Equation of C;: we recover the Hesse pencil

P(VY) O CP(Vy)

uxiy VX2 wx3
0=det | wxxo wa wq | =xpoxs(u®+v+w?)— (06 +x3 +x3)uvw.

VX3 WXy UXp
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Cayley

Among the invariants of R there is the 3 x 3 x 3 hyperdeterminant, of
degree 36. More complicated than Cayley's 2 x 2 x 2 hyperdeterminant,
of degree four; the orbit structure of P” O P! x P! x P! is very simple:

P’ 5 Quartic D Part.Decomposable D Decomposable

So we reduce to format 2 x 2 x 2 in the relative setting: r defines a global
section of the rank 8 bundle @; X @, K Q3 on P(V;) x P(V2) x P(V3).
We deduce:
@ A quadric section Q of P(V4) x P(V2) x P(V3), whose equation is
given by the relative hyperdeterminant.
e A surface S C Sing(Q) where r becomes decomposable.

Proposition

S is an abelian surface. In fact S ~ C x C.
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Coble

This is reminiscent of the classical Coble cubics (1917), whose singular
loci are abelian surfaces:

PPo>CHo A

Gruson-Sam-Weyman (2013) observed that these cubics can easily be
constructed from a generic tensor r € A3C?, by passing to the relative
setting and reducing to A2C8.

D S

Similarly, the Coble quartics (1928) are singular along Kummer
threefolds, which are quotients of abelian threefolds:

P> QoK.

Again this can be recovered from a generic tensor r € A*C8, by passing
to the relative setting and reducing to A3C’.

NI S
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Kummer

Another classical family of surfaces related to abelian varieties is the
family of Kummer surfaces: quartic surfaces in P3 with 16 nodes, defined
by one polynomial of type

A(XPy2+2212)+ B(x* 224y % t?) + C (X 2+ y2 2%) 42 Dxyzt + E (x* +y* +2* + t*)
for some coefficients (A, B, C, D, E) satisfying the cubic condition
4E3 — (A + B>+ C* - D*)E + ABC =0.

Such a surface K is a quotient of an abelian surface A by (—1). The
minimal resolution is a K3 surface S:

A S
N
K K*~K cPs

The 16 nodes in K* ~ K give 16 conics in K, called tropes and defining a
166 configuration.
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Spinors

Claim. Kummer surfaces are closely related to the half-spin
representations of Sping!

Two half-spin representations A, and A_, in duality. These are
minuscule representations.

If wy are weights of Ay, (wy,w_) can take only three values. Say that
w4 and w_ are incident if (wy,w_) is not the intermediate one.

Proposition

This defines a 16¢ configuration of Kummer type.

To get something more geometric, consider the spinor tenfolds

Sy ~ 0G(5,10)" c P(Ay),  S_ =~ 0G(5,10)" C P(A_).
Facts.
@ S, and S_ are projectively dual, isomorphic as projective varieties

@ Up to isomorphism, they admit only finitely many linear sections of
codimension < 3 (classified ; geometric study by Kuznetsov)
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Proposition (Kuznetsov, -)
@ There are two different types of smooth codim 2 sections of S .

The special ones define a divisor Ry C G(2,A_), the spinor
quadratic line complex.

There are four different types of smooth codim 3 sections of S, .

The special ones define a divisor R3 C G(3,A_), the spinor
quartic plane complex.

Q
o
o
@ For P, C A_, the intersection R3 N G(3, Ps) is a Kummer surface.

A crucial point is that C* ® A_ is a theta-representation:

D S

g =5l x 5010 @ (C*@AL) @ (NCH@ Vig) @ (NPT o AL)

Here a Cartan subspace ¢ has rank four and W, is the reflexion group Gs;
in the Shephard-Todd classification: order 46080, invariants of degrees
8,12,20,24. Hence a nice GIT moduli space of codimension 4 sections.
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Consider a tensor r € C* ®@ A_ = Hom(C*, A_). We can pullback R, by
r and get a quadratic line complex: a quadratic section I, of G(2,4)
(GSW). There are two families of linear spaces in G(2,4), hence

M3 Fi23

PN N

C
[EW M3 Fi.2 Fi3 Fa3

INAF X

p1 and p; are conic bundles that degenerate along K and K* (Klein).
Can also pull back to Fy3: r defines a global section of S2(Uy A U3)Y
~~ degenerates/vanishes along a hypersurface B, /surface A,.

Proposition
@ B, is a quadric section of f; 3,
@ A, = Sing(B,) is the abelian surface whose Kummer is K,

© B, is the unique quadric hypersurface that is singular along A,.
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~~ Coble type situation: a hypersurface with a special singular locus, and
uniquely determined by this locus!

Alternative. Consider OG(2,10) with its rank four spinor bundles Sy:
r(0G(2,10),8+) = Ax.

Our tensor r defines a morphism between vector bundles on OG(2,10):
C* ® Ooc(2,10) 8,

The rank is at most i along some locus D;(r) C 0G(2,10).

Proposition
@ D;s(r) is a quadric section of OG(2,10)
@ D(r) C Sing(Ds(r)) and Di(r) C Sing(D»(r))
@ Di(r) is a smooth Fano fourfold of index one

Q the kernel map Dy(r)—P3 is a conic bundle that degenerates along
the Kummer surface K,
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Pencils of quadrics: C? @ S°C?"

Even classical models can be interesting: consider
slp, = 505, © SZC?"

We have a reference quadric Q;, non degenerate, and we choose a
second one Q> = S3C?" traceless. Generically

Q=) x Q=) ax
with a; + - - - 4+ ap, = 0: this is the Cartan subspace.
Each OG(k,2n) is stratified by the rank of Q:

Dy-1(Q2) D -+ D Do(@2).
The hypersurface Dx_1(Q2) is a quadric section of OG(k,2n) with

respect to Pliicker. For k = n yields quartic sections of the spinor
varieties Sy = OG(n,2n)4.
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n = 3, the spinor variety is P> and we recover Klein's point of view on
Kummer surfaces, along with their normalized equations

rst(vy + Vi 4+ va A+ vg) + r(s? 4 2 — w) (VP + vEVE)+
+5(t2 + 7 = vA) (V3 + viv3) 4 t(r? 4 s° — 1) (VEvi + viv2)
—2(rs + st 4 t2r + uvw)vvivavs = 0.
n = 4, the spinor variety is Q° (triality) and the quartic belongs to a
13-dimensional linear system generated by

Al = VVivavz — VaVsVgly Ag= (Vi+ V2 + v+ v3)?
A = VogviVvaVs — VoV3Vgly Ag= (VB + v+ v+ v3)?
A3 = vgviVvgVs — VoV3Va Vs A= (VZ+VZ+ v+ v2)?
Ay = VowovaVg — ViV3VvsVy A= (V+ V2 + v+ v2)?
As = VvowoVsvyr — Vi3V e Ap = (V+vZ+ v+ 3)?
As = Vov3vavz — ViVoVs Vg Az = (V+vi+ 2+ 2)?
A7 = VogW3VsVg — ViVaValy A= (VE+ 3+ v+ v2)?

One recognizes the seven lines in a Fano plane!

Laurent Manivel Geometry of tame tensors



Modular interpretations

The hypersurface Dy_1 has multiplicity k along Dy = F(Q1 N Q2), which
has been (and is still) studied a lot. We expect Di_ is uniquely defined
by Dy, we can prove it for k << n.

The pencil contains 2n singular quadrics and defines a hyperelliptic curve
C of genus g = n— 1.
Known since Reid (1972) and Desale-Ramanan (1976) that

Fn—l(Ql n Qz) ~ Jac(C), Fn_2(Q1 n Qz) ~ SUC(2, 1)

Moduli spaces in genus 2 ad 3 are also related to Coble hypersurfaces:

Q for g =2, SUc(3) 2L P8 branched along the Coble sextic,

@ for g =3, SUc(2) is the Coble quartic.
(GSW) observed that these moduli spaces can be recovered from the
theta-representations A3C° and A*C8.

These even moduli space are singular; what about their smooth partners,
the odd moduli spaces SUc(r,1)?
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Four-forms

e7 = slg & N*CB

A four-form w € A*V’ ~ A*V4 reduces to a three-form in seven variables
on the twisted quotient bundle over P(V3):

NV = HO(P(Ve), A°QY(1)),
Wi @) = w(v,e,e,0).

The degree seven invariant on A3C” defines the Coble quartic Q(w).

Alternatively, we can reduce to a three-form in six variables over
FI(1,7, V) ~~ threefold A(w) with

N
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Same situation as for Kummer surfaces: A(w) ~ Jac(C) is an abelian
threefold and Q(w) selfdual (GSW-Thorne).

Even simpler over G(2, V3): two-forms in six variables!

Theorem (g = 3)

SUc(2,1) is the singular locus of a Coble quadric in G(2,8).
Moreover this Coble quadric is projectively self-dual.

Grassmann duality (Chaput, unpublished):
Let H C G = G(k, k + £) be a hypersurface. Let h = [Ux] be a generic
point, then

ThH C TyG = Hom( Uy, Viye/Ui) ~ (ThH): € Hom(Vieye/ Uk, Uk)

spanned by ¢ surjective in general (if £ > k)
~ the kernel gives W, D Uy defining h* € H* C G(¢, k + £).
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Three-forms

eg = slg @ A3C° @ AOCP

A three-form o € A3V, reduces to a two-form in eight variables on the
twisted quotient bundle over P(Vj), the degree four Pfaffian defines the
Coble cubic C(0), singular along an abelian surface A(c) ~ Jac(C). The
moduli space in on the dual side, where C(0)* = S(o) sextic in P(Vg)
(Dolgachev, Ortega-Nguyen).

Again we can reduce to a three-form in six variables over G(6, Vg). The
quartic invariant gives a quadric section Q(o) + a locus D(c) where the
three-form becomes completely decomposable.

Theorem (g = 2)

SUc(3,1) = D(o) is the singular locus of the singular locus of the Coble
quadric in G(3,9).

The proofs of both theorems relies on the geometry of lines in the moduli
spaces of vector bundles on curves.
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Recap

Tame tensors = those appearing in gradings of simple Lie algebras.
Classified by Vinberg theory; their GIT moduli space is just an affine
space, quotient of a Cartan space ¢ by a complex reflection group W,.
From a generic such tensor one can in many cases construct:

@ an abelian variety (curve, surface, threefold)

@ other interesting geometric loci (Kummer, moduli space)

© Coble type hypersurfaces, singular along these loci

@ presumably, uniquely characterized by this property

@ and whose equations we can compute explicitely.
These equations define W, -equivariant rational maps
P(c) --» PN

whose images are nice modular objects (Segre cubic, Gopel variety, etc.)
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ClpCieCs
C*® A1

A3C?®

N4C8

Ase

52c2g+2

0G(2,16)
0G(g,2g +2)

OG(g —1,2g + 2)
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elliptic
Kummer
self dual
Abelian

Coble cubic
dual sextic
Coble quadric
Coble quartic
self dual

Coble quadric
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CxC,g=1
K

K*~K
Jac(C),g =2

Fano fourfold
Jac(C), g =2
5Uc(3)
SUc(3,1)
SUC(2)7 g§= 3
Kum(C)
Jac(C)
SUc(2,1)
SUc(2)?7g=14
SUc(2,1)?
Jac(C)
SUc(2,1)



