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A toy case: Rubik’s cubes

We consider tensors of format 3× 3× 3: tensors in R = V1 ⊗ V2 ⊗ V3

where V1,V2,V3 are three-dimensional vector spaces, up to the action of
G = GL(V1)× GL(V2)× GL(V3).

Theorem (Ng 1995, Bhargava-Ho 2013)

There is a bijection between nondegenerate G-orbits in R and collections
(C , L1, L2, L3) with C a genus one curve and L1, L2, L3 line bundles of
degree three on C such that L⊗2

1 = L2 ⊗ L3.

GIT quotient: consider G0 = SL(V1)× SL(V2)× SL(V3). Then

R//G0 ≃ A3

is an affine space. More precisely the invariant ring RG0 ≃ C[I6, I9, I12] is
a polynomial ring over invariants of degrees 6, 9, 12.
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Vinberg and Kac

Nice behavior explained by the fact that R = V1 ⊗ V2 ⊗ V3 is a
theta-representation. Starting from affine E6

and choosing the central vertex, Kac and Vinberg tell us we must get a
Z3-grading of e6, namely

e6 = sl(V1)× sl(V2)× sl(V3)⊕ (V1 ⊗ V2 ⊗ V3)⊕ (V1 ⊗ V2 ⊗ V3)
∨

In this situation, the G0-orbits in R = V1 ⊗ V2 ⊗ V3 can be classified
exactly as in Jordan theory. In a nutshell:

semisimple and nilpotent elements + Jordan decompositions,

one can define Cartan subspaces c ⊂ R, and every semisimple
element in R is conjugate to some element of a given c,

the Weyl group Wc := N(c)/Z (c) is a complex reflection group,
and this is why R//G0 ≃ c/Wc is an affine space.
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Cartan

So we fix a Cartan subspace c = ⟨h1, h2, h3⟩ where

h1 = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3,
h2 = a1 ⊗ b2 ⊗ c3 + a2 ⊗ b3 ⊗ c1 + a3 ⊗ b1 ⊗ c2,
h3 = a1 ⊗ b3 ⊗ c2 + a2 ⊗ b1 ⊗ c3 + a3 ⊗ b2 ⊗ c1.

Fact. Wc is the complex reflection group G25 in the Shephard-Todd
classification, of order 648. This is a degree three extension of the
Hessian group = automorphism group of the Hesse pencil of plane cubics

λ(u3 + v3 + w3)− µuvw = 0.

A generic r ∈ R is equivalent to some r = uh1 + vh2 +wh3 ∈ c. Consider

C1 = {[x ] ∈ P(V∨
1 ), r(x , •, •) degenerate},

C12 = {([x ], [y ]) ∈ P(V∨
1 )× P(V∨

2 ), r(x , y , •) = 0}

⇝ 6 models of the same genus one curve C .
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Hesse

These 6 models are related by correspondences
C12
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B

~~||
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||
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P(V∨
1 ) ⊃ C1 C2 ⊂ P(V∨

2 )

P(V∨
1 ) × P(V∨

3 ) ⊃ C13

OO

  B
BB
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BB

B C23

~~||
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||

OO

⊂ P(V∨
2 ) × P(V∨

3 )

C3

where all the arrows are isomorphisms. (But not commutative!)
Equation of C1: we recover the Hesse pencil

0 = det

ux1 vx2 wx3
wx2 ux3 vx1
vx3 wx1 ux2

 = x1x2x3(u
3+v3+w3)− (x31 +x32 +x33 )uvw .
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Cayley

Among the invariants of R there is the 3× 3× 3 hyperdeterminant, of
degree 36. More complicated than Cayley’s 2× 2× 2 hyperdeterminant,
of degree four; the orbit structure of P7 ⊃ P1 × P1 × P1 is very simple:

P7 ⊃ Quartic ⊃ Part.Decomposable ⊃ Decomposable

So we reduce to format 2× 2× 2 in the relative setting: r defines a global
section of the rank 8 bundle Q1 ⊠ Q2 ⊠ Q3 on P(V1)× P(V2)× P(V3).
We deduce:

A quadric section Q of P(V1)× P(V2)× P(V3), whose equation is
given by the relative hyperdeterminant.

A surface S ⊂ Sing(Q) where r becomes decomposable.

Proposition

S is an abelian surface. In fact S ≃ C × C.
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Coble

This is reminiscent of the classical Coble cubics (1917), whose singular
loci are abelian surfaces:

P8 ⊃ C ⊃ A.

Gruson-Sam-Weyman (2013) observed that these cubics can easily be
constructed from a generic tensor r ∈ ∧3C9, by passing to the relative
setting and reducing to ∧2C8.

Similarly, the Coble quartics (1928) are singular along Kummer
threefolds, which are quotients of abelian threefolds:

P7 ⊃ Q ⊃ K.

Again this can be recovered from a generic tensor r ∈ ∧4C8, by passing
to the relative setting and reducing to ∧3C7.
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Kummer

Another classical family of surfaces related to abelian varieties is the
family of Kummer surfaces: quartic surfaces in P3 with 16 nodes, defined
by one polynomial of type

A(x2y2+z2t2)+B(x2z2+y2t2)+C (x2t2+y2z2)+2Dxyzt+E (x4+y4+z4+t4)

for some coefficients (A,B,C ,D,E ) satisfying the cubic condition

4E 3 − (A2 + B2 + C 2 − D2)E + ABC = 0.

Such a surface K is a quotient of an abelian surface A by (−1). The
minimal resolution is a K3 surface S:

A

2:1 ��?
??

??
??

? S

����
��
��
��

%%KK
KKK

KKK
KK

K K∗ ≃ K ⊂ P̌3

The 16 nodes in K∗ ≃ K give 16 conics in K, called tropes and defining a
166 configuration.
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Spinors

Claim. Kummer surfaces are closely related to the half-spin
representations of Spin10!

Two half-spin representations ∆+ and ∆−, in duality. These are
minuscule representations.
If ω± are weights of ∆±, ⟨ω+, ω−⟩ can take only three values. Say that
ω+ and ω− are incident if ⟨ω+, ω−⟩ is not the intermediate one.

Proposition

This defines a 166 configuration of Kummer type.

To get something more geometric, consider the spinor tenfolds

S+ ≃ OG (5, 10)+ ⊂ P(∆+), S− ≃ OG (5, 10)− ⊂ P(∆−).

Facts.

S+ and S− are projectively dual, isomorphic as projective varieties

Up to isomorphism, they admit only finitely many linear sections of
codimension ≤ 3 (classified ; geometric study by Kuznetsov)
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Proposition (Kuznetsov, -)

1 There are two different types of smooth codim 2 sections of S+.
2 The special ones define a divisor R2 ⊂ G (2,∆−), the spinor

quadratic line complex.

3 There are four different types of smooth codim 3 sections of S+.
4 The special ones define a divisor R3 ⊂ G (3,∆−), the spinor

quartic plane complex.

5 For P4 ⊂ ∆−, the intersection R3 ∩ G (3,P4) is a Kummer surface.

A crucial point is that C4 ⊗∆− is a theta-representation:

e8 = sl4 × so10 ⊕ (C4 ⊗∆+)⊕ (∧2C4 ⊗ V10)⊕ (∧3C4 ⊗∆−)

Here a Cartan subspace c has rank four and Wc is the reflexion group G31

in the Shephard-Todd classification: order 46080, invariants of degrees
8, 12, 20, 24. Hence a nice GIT moduli space of codimension 4 sections.
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Consider a tensor r ∈ C4 ⊗∆− = Hom(C4,∆−). We can pullback R2 by
r and get a quadratic line complex: a quadratic section Γr of G (2, 4)
(GSW). There are two families of linear spaces in G (2, 4), hence

Γ1,2,3
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p1 and p2 are conic bundles that degenerate along K and K∗ (Klein).
Can also pull back to F1,3: r defines a global section of S2(U1 ∧ U3)

∨

⇝ degenerates/vanishes along a hypersurface Br/surface Ar .

Proposition

1 Br is a quadric section of F1,3,

2 Ar = Sing(Br ) is the abelian surface whose Kummer is Kr ,

3 Br is the unique quadric hypersurface that is singular along Ar .
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⇝ Coble type situation: a hypersurface with a special singular locus, and
uniquely determined by this locus!

Alternative. Consider OG (2, 10) with its rank four spinor bundles S±:

Γ(OG (2, 10),S±) = ∆±.

Our tensor r defines a morphism between vector bundles on OG (2, 10):

C4 ⊗OOG(2,10)
r̄−→ S+

The rank is at most i along some locus Di (r) ⊂ OG (2, 10).

Proposition

1 D3(r) is a quadric section of OG (2, 10)

2 D2(r) ⊂ Sing(D3(r)) and D1(r) ⊂ Sing(D2(r))

3 D1(r) is a smooth Fano fourfold of index one

4 the kernel map D1(r)−→P̌3 is a conic bundle that degenerates along
the Kummer surface Kr
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Pencils of quadrics: C2 ⊗ S2C2n

Even classical models can be interesting: consider

sl2n = so2n ⊕ S2
0C2n

We have a reference quadric Q1, non degenerate, and we choose a
second one Q2 = S2

0C2n traceless. Generically

Q1 =
∑
i

x2i , Q2 =
∑
i

aix
2
i

with a1 + · · ·+ a2n = 0: this is the Cartan subspace.

Each OG (k, 2n) is stratified by the rank of Q2:

Dk−1(Q2) ⊃ · · · ⊃ D0(Q2).

The hypersurface Dk−1(Q2) is a quadric section of OG (k, 2n) with
respect to Plücker. For k = n yields quartic sections of the spinor
varieties S± = OG (n, 2n)±.
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n = 3, the spinor variety is P3 and we recover Klein’s point of view on
Kummer surfaces, along with their normalized equations

rst(v4
0 + v4

1 + v4
2 + v4

3 ) + r(s2 + t2 − w2)(v2
0 v

2
1 + v2

2 v
2
3 )+

+s(t2 + r2 − v2)(v2
0 v

2
2 + v2

1 v
2
3 ) + t(r2 + s2 − u2)(v2

0 v
2
3 + v2

1 v
2
2 )

−2(r2s + s2t + t2r + uvw)v0v1v2v3 = 0.

n = 4, the spinor variety is Q6 (triality) and the quartic belongs to a
13-dimensional linear system generated by

A1 = v0v1v2v3 − v4v5v6v7 A8 = (v2
4 + v2

5 + v2
6 + v2

7 )
2

A2 = v0v1v4v5 − v2v3v6v7 A9 = (v2
2 + v2

3 + v2
6 + v2

7 )
2

A3 = v0v1v6v7 − v2v3v4v5 A10 = (v2
2 + v2

3 + v2
4 + v2

5 )
2

A4 = v0v2v4v6 − v1v3v5v7 A11 = (v2
1 + v2

3 + v2
5 + v2

7 )
2

A5 = v0v2v5v7 − v1v3v4v6 A12 = (v2
1 + v2

3 + v2
4 + v2

6 )
2

A6 = v0v3v4v7 − v1v2v5v6 A13 = (v2
1 + v2

2 + v2
5 + v2

6 )
2

A7 = v0v3v5v6 − v1v2v4v7 A14 = (v2
1 + v2

2 + v2
4 + v2

7 )
2

One recognizes the seven lines in a Fano plane!
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Modular interpretations

The hypersurface Dk−1 has multiplicity k along D0 = Fk(Q1 ∩Q2), which
has been (and is still) studied a lot. We expect Dk−1 is uniquely defined
by D0, we can prove it for k << n.

The pencil contains 2n singular quadrics and defines a hyperelliptic curve
C of genus g = n − 1.
Known since Reid (1972) and Desale-Ramanan (1976) that

Fn−1(Q1 ∩ Q2) ≃ Jac(C ), Fn−2(Q1 ∩ Q2) ≃ SUC (2, 1).

Moduli spaces in genus 2 ad 3 are also related to Coble hypersurfaces:

1 for g = 2, SUC (3)
2:1−→ P8 branched along the Coble sextic,

2 for g = 3, SUC (2) is the Coble quartic.

(GSW) observed that these moduli spaces can be recovered from the
theta-representations ∧3C9 and ∧4C8.

These even moduli space are singular; what about their smooth partners,
the odd moduli spaces SUC (r , 1)?

Laurent Manivel Geometry of tame tensors



Four-forms

e7 = sl8 ⊕ ∧4C8

A four-form ω ∈ ∧4V∨
8 ≃ ∧4V8 reduces to a three-form in seven variables

on the twisted quotient bundle over P(V8):

∧4V∨
8 ≃ H0(P(V8),∧3Q∨(1)),

ω 7→ ω̃[v ] = ω(v , •, •, •).

The degree seven invariant on ∧3C7 defines the Coble quartic Q(ω).

Alternatively, we can reduce to a three-form in six variables over
Fl(1, 7,V8) ⇝ threefold A(ω) with

A(ω)

$$I
II

II
II

II

~~}}
}}
}}
}}

P(V8) ⊃ Q(ω)⊃ K (ω) K (ω) ⊂Q(ω)∗ ⊂ P(V∨
8 )
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Same situation as for Kummer surfaces: A(ω) ≃ Jac(C ) is an abelian
threefold and Q(ω) selfdual (GSW-Thorne).

Even simpler over G (2,V8): two-forms in six variables!

Theorem (g = 3)

SUC (2, 1) is the singular locus of a Coble quadric in G (2, 8).
Moreover this Coble quadric is projectively self-dual.

Grassmann duality (Chaput, unpublished):
Let H ⊂ G = G (k, k + ℓ) be a hypersurface. Let h = [Uk ] be a generic
point, then

ThH ⊂ ThG = Hom(Uk ,Vk+ℓ/Uk)⇝ (ThH)⊥ ⊂ Hom(Vk+ℓ/Uk ,Uk)

spanned by ϕ surjective in general (if ℓ > k)
⇝ the kernel gives Wℓ ⊃ Uk defining h∗ ∈ H∗ ⊂ G (ℓ, k + ℓ).
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Three-forms

e8 = sl9 ⊕ ∧3C9 ⊕ ∧6C9

A three-form σ ∈ ∧3V∨
9 reduces to a two-form in eight variables on the

twisted quotient bundle over P(V9), the degree four Pfaffian defines the
Coble cubic C (σ), singular along an abelian surface A(σ) ≃ Jac(C ). The
moduli space in on the dual side, where C (σ)∗ = S(σ) sextic in P(V9)
(Dolgachev, Ortega-Nguyen).

Again we can reduce to a three-form in six variables over G (6,V9). The
quartic invariant gives a quadric section Q(σ) + a locus D(σ) where the
three-form becomes completely decomposable.

Theorem (g = 2)

SUC (3, 1) = D(σ) is the singular locus of the singular locus of the Coble
quadric in G (3, 9).

The proofs of both theorems relies on the geometry of lines in the moduli
spaces of vector bundles on curves.
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Recap

Tame tensors = those appearing in gradings of simple Lie algebras.
Classified by Vinberg theory; their GIT moduli space is just an affine
space, quotient of a Cartan space c by a complex reflection group Wc.

From a generic such tensor one can in many cases construct:

1 an abelian variety (curve, surface, threefold)

2 other interesting geometric loci (Kummer, moduli space)

3 Coble type hypersurfaces, singular along these loci

4 presumably, uniquely characterized by this property

5 and whose equations we can compute explicitely.

These equations define Wc-equivariant rational maps

P(c) 99K PN

whose images are nice modular objects (Segre cubic, Göpel variety, etc.)
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C3 ⊗ C3 ⊗ C3 P2 × P2 × P2 2 elliptic C × C , g = 1
C4 ⊗∆10 P3 4 Kummer K

P̌3 4 self dual K∗ ≃ K
Fl4 2 Abelian Jac(C ), g = 2
Q8 4
OG(2, 10) 2 Fano fourfold

∧3C9 P8 3 Coble cubic Jac(C ), g = 2
P̌8 6 dual sextic SUC (3)
G (6, 9) 2 Coble quadric SUC (3, 1)

∧4C8 P7 4 Coble quartic SUC (2), g = 3
P̌7 4 self dual Kum(C)
Fl8 2 Jac(C )
G (4, 8) 2 Coble quadric SUC (2, 1)

∆16 Q14 4 SUC (2)? g = 4
OG(2, 16) 2 SUC (2, 1)?

S2C2g+2 OG (g , 2g + 2) 2 Jac(C )
OG (g − 1, 2g + 2) 2 SUC (2, 1)
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