Complete quadrics and Gaussian models

L. Manivel
+ M. Michalek, L. Monin, T. Seynnaeve, M. Vodicka

Toulouse Mathematics Institute
GO 60+1
June 25, 2021

Main problem: compute the ML-degree

Consider $V \subset M_{n}, S M_{n}, A M_{2 n}$ a linear space of square complex matrices, not all singular, and define the reciprocal

$$
V^{-1}:=\text { closure of }\left\{M^{-1}, M \in V\right\}
$$

The ML-degree (maximum likelihood degree) can be defined as

$$
M L(V)=\operatorname{deg}\left(\mathbb{P} V^{-1}\right)
$$

Problem: Compute it! In particular, compute

$$
\phi(n, d):=M L(V)
$$

when $V \subset S M_{n}$ is generic of dimension d.

Why is that difficult? The degree is computed by counting the intersection points with a generic linear space of codimension $d-1$ \rightsquigarrow we impose relations between the maximal minors $M_{i j}$ of $M \in V$:

$$
\sum_{i j} a_{i j}^{k} M_{i j}=0, \quad k=1, \ldots, d-1 .
$$

Easy fo small d :

$$
\begin{aligned}
& \phi(n, 1)=1 \\
& \phi(n, 2)=n-1 \\
& \phi(n, 3)=(n-1)^{2}
\end{aligned}
$$

Problem: starting from $d-1=3$, the matrices of corank two contribute since they verify $M_{i j}=0 \forall i, j$.
But we want to count only invertible solutions! So

$$
\begin{aligned}
& \phi(n, 4)=(n-1)^{3}-\binom{n+1}{3} \\
& \phi(n, 5)=\frac{1}{12}(n-1)(n-2)\left(7 n^{2}-19 n+6\right)
\end{aligned}
$$

The Sturmfels-Uhler conjecture

Conjecture (Sturmfels-Uhler 2009)

$\phi(n, d)$ is a polynomial function of n for each fixed d.

Main result of this talk:

Theorem (MMMSV 2020)

(1) The Sturmfels-Uhler conjecture is true.
(2) There is an explicit formula for $\phi(n, d)$.

$$
\begin{aligned}
\phi(n, 10)=\frac{(n-1)(n-2)(n-3)}{362880} & \left(8357 n^{6}-114126 n^{5}+629471 n^{4}\right. \\
& -1816902 n^{3}+2911016 n^{2} \\
& -2201088 n+60480) .
\end{aligned}
$$

A detour through projective duality

$X \subset \mathbb{P}^{N} \rightsquigarrow$ projectively dual variety $X^{*} \subset \hat{\mathbb{P}}^{N}$:

$$
X^{*}:=\left\{H \in \hat{\mathbb{P}}^{N}, \exists x \in X, H \supset T_{x} X\right\}
$$

There is an incidence correspondence

where the incidence variety I_{X} is the conormal variety $\mathbb{P}\left(N_{X}^{*}\right)$ (at least over the smooth locus).

$$
\left[I_{X}\right]=\sum_{k=0}^{N+1} \delta_{X}(k) H_{1}^{k} H_{2}^{N+1-k} \in A^{*}\left(\mathbb{P}^{N} \times \hat{\mathbb{P}}^{N}\right)
$$

The coefficients are the multidegrees.

Example (Plücker formula). Let $C \subset \mathbb{P}^{2}$ be a curve of degree d, with δ nodes and κ cusps, then $C^{*} \subset \hat{\mathbb{P}}^{2}$ is a curve of degree

$$
d^{*}=d(d-1)-2 \delta-3 \kappa .
$$

\rightsquigarrow very sensitive to singularities.
Example (Determinantal varieties). Let $D_{n, r} \subset \mathbb{P}\left(S M_{n}\right)$ the variety of symmetric matrices of rank $\leq r$.
Consider a general point [M], with M a matrix of rank r :

$$
M=\left(\begin{array}{c|c}
\mathbf{I}_{r} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0}_{n-r}
\end{array}\right), \quad \hat{T}_{[M]} D_{n, r}=\left(\begin{array}{c|c}
* & * \\
\hline * & \mathbf{0}_{n-r}
\end{array}\right) .
$$

So a hyperplane H is tangent to $D_{n, r}$ at $[M]$ iff it is defined by a matrix of the form

$$
\left(\begin{array}{c|c}
\mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \boldsymbol{*}
\end{array}\right) .
$$

We can deduce the following facts:

- The projective dual of $D_{n, r}$ is $D_{n, n-r}$.
- The incidence variety is essentially

$$
I_{D_{n, r}} \simeq \mathbb{P}\left(S^{2} U\right) \times_{G r(r, n)} \mathbb{P}\left(S^{2} Q^{*}\right)
$$

- The codegree of $D_{n, r}$ can be computed.

Theorem (Harris-Tu 1984)

The degree of the determinantal variety $D_{n, n-r}$ is

$$
\operatorname{deg}\left(D_{n, n-r}\right)=\prod_{k=0}^{r-1} \frac{\binom{n+k}{r-k}}{\binom{k+1}{k}}
$$

Note: for r fixed, this is polynomial in n !

Two main ingredients in the proof.
(1) Degeneracy loci formula for a symmetric morphism $\varphi: E^{*} \rightarrow E$, where E is some rank n vector bundle over a smooth variety X :

$$
\left[D_{r}(\varphi)\right]=2^{n-r} \operatorname{det}\left(c_{n-r+i-2 j+1}(E)\right)_{1 \leq i, j<n-r}
$$

(Also Jozefiak-Lascoux-Pragacz 1980.)
(2) Application to the tautological morphism on $X=\mathbb{P}\left(S M_{n}\right)$

$$
\begin{array}{ccc}
\mathbb{C}^{n} \otimes \mathcal{O}_{X}(-1) & \longrightarrow & \mathbb{C}^{n} \otimes \mathcal{O}_{X} \\
v \otimes M & \mapsto & M(v)
\end{array}
$$

\rightsquigarrow determinant of binomial coefficients which has to be evaluated (Giambelli formula vs Weyl dimension formula!).

Problem: Extend the codegree formula to general determinantal varieties $X=D_{n, r} \cap \mathbb{P} M$, at least for M generic of dimension $m+1$.

Beware! The dual of $X=D_{n, r} \cap \mathbb{P} M$ is a hypersurface only in the range given by the Pataki inequalities

$$
\binom{n-r+1}{2} \leq m \leq\binom{ n+1}{2}-\binom{r+1}{2}
$$

\rightsquigarrow codegree/class $\delta(m, n, r)$ to be computed!
Some good news:
(1) The codegree $\delta(m, n, r)$ has a name: the algebraic degree of semidefinite programming.
(2) The codegree is a multidegree:

$$
\left[I_{D_{n, r}}\right]=\sum_{m=0}^{\binom{n+1}{2}} \delta(m, n, r) H_{1}^{m} H_{2}^{\binom{n+1}{2}-m}
$$

(3) The degeneracy loci formula was extended to Euler topological characteristics $e\left(D_{r}(\varphi)\right)$ by Pragacz (1988).

This is classically related to the codegree. Indeed, consider a general pencil P of sections by hyperplanes H, with intersection L :

Then p is the blow-up of $X \cap L$, while q has codegree (X) singular fibers. Computing $e(I)$ in two ways, one obtains the class formula

$$
(-1)^{\operatorname{dim}(X)} \operatorname{codeg}(X)=e(X)-2 e(X \cap H)+e(X \cap L)
$$

Obviously, X determinantal implies $X \cap H, X \cap L$ determinantal. So the Pragacz formula for the Euler topological characteristics yields an explicit formula for the codegree.

Objection: The Pragacz formula applies only when X is smooth, which almost never happens if X is determinantal!

Conjecture (Nie-Ranestad-Sturmfels 2006)

The formula is true, notwithstanding singularities.
A bold and brilliant guess! A priori, we know the codegree is very sensitive to singularities. So the conjecture should not be true.

Theorem (MMMSV 2020)

The conjecture is true!

The explicit formula

$$
\delta(m, n, n-s)=\sum_{l=\left(0 \leq i_{1}<\cdots<i_{s}<n\right)}(-1)^{m-s-\Sigma I}\binom{m-1}{m-s-\Sigma l} \psi_{l} b_{l}(n) .
$$

Ingredients:
(1) The ψ_{l} 's are the Lascoux coefficients (more details later).
(2) The $b_{l}(n)$'s are polynomials in n defined by:

$$
\begin{gathered}
\sum_{i \geq 0} b_{i}(n) h^{i}=\left(\frac{1+h / 2}{1-h / 2}\right)^{n} \\
b_{i, j}(n)=b_{i}(n) b_{j}(n)+2 \sum_{k>0}(-1)^{k} b_{i-k}(n) b_{j+k}(n), \\
b_{l}(n)=\operatorname{Pf}\left(b_{i_{p}, i_{q}}(n)\right) .
\end{gathered}
$$

Back to the ML-degree: complete quadrics

Recall the ML-degree

$$
\phi(n, d)=M L(V)=\operatorname{deg}\left(\mathbb{P} V^{-1}\right)=\operatorname{deg}\left(\mathbb{P}\left\{M^{-1}, M \in V\right\}\right)
$$

To compute it, need to regularize the rational map $M \mapsto M^{-1}$. Classically done using the variety $C Q_{n}$ of complete quadrics:

where p_{i} is the blowup of the determinantal loci $D_{n, 1}, \ldots, D_{n, n-2}$
\rightsquigarrow exceptional divisors E_{1}, \ldots, E_{n-1},
\rightsquigarrow hyperplane divisors $L_{1}=p_{1}^{*} H_{1}, L_{2}=p_{2}^{*} H_{2}$.

The ML-degree is now given by an intersection number:

$$
\phi(n, d)=\int_{C Q_{n}} L_{1}^{\binom{n+1}{2}-d} L_{2}^{d-1} .
$$

The intersection ring of $C Q_{n}$ has been well-studied from Schubert 1879 (the 3264 conics) to De Concini-Procesi 1985
\rightsquigarrow algorithm for a given n. Here we need to fix d, vary n.
Observation: $n L_{1}=(n-1) E_{1}+(n-2) E_{2}+\cdots+E_{n-1}$, so

$$
n \phi(n, d)=\sum_{s>0} s \int_{E_{n-s}} L_{1}^{\binom{n+1}{2}-d-1} L_{2}^{d-1} .
$$

Moreover $E_{n-s} \simeq \mathbb{P}\left(S^{2} U\right) \times_{G(n-s, n)} \mathbb{P}\left(S^{2} Q^{*}\right)$ is essentially the conormal space to $D_{n, n-s}$, and the integral is a multidegree!

Fundamental identity

$$
n \phi(n, d)=\sum_{\binom{s+1}{2} \leq d} s \delta(d, n, n-s)
$$

Consequence: NRS conjecture \Longrightarrow SU conjecture + explicit formula!

We focus on $\delta(d, n, n-s)$. Can use push-forward to compute

$$
\delta(d, n, n-s)=\int_{E_{n-s}} L_{1}^{\binom{n+1}{2}-d-1} L_{2}^{d-1} .
$$

Recall that for $\pi: \mathbb{P}(E) \rightarrow X$ and $\lambda=c_{1} \mathcal{O}_{E}(1)$, we have $\pi_{*} \lambda^{k}=s_{k-e+1}(E)$, a Segre class. We get

$$
\delta(d, n, n-s)=\int_{G(n-s, n)} S_{\binom{n+1}{2}-\binom{n-s+1}{2}-d}\left(S^{2} U^{*}\right) s_{d-\binom{s+1}{2}}\left(S^{2} Q\right)
$$

The Lascoux coefficients (Laksov Lascoux Thorup 1989)

$$
s\left(S^{2} E\right)=\sum_{I=\left(0 \leq i_{1}<\cdots<i_{e}\right)} \psi_{I} s_{\lambda(I)}(E) .
$$

Here $\lambda(I)=\left(i_{e}-e+1, \ldots, i_{2}-1, i_{1}\right)$ is a partition and $s_{\lambda}(E)$ the characteristic class associated to the Schur function
$s_{\lambda}\left(x_{1}, \ldots, x_{e}\right)=s_{\lambda}(x)$, so

$$
\prod_{1 \leq i, j \leq e} \frac{1}{1-x_{i}-x_{j}}=\sum_{l} \psi_{l} s_{\lambda(I)}(x)
$$

First values: $\psi_{i}=2^{i}$ and $\psi_{i j}=\sum_{i<k \leq j}\binom{i+j}{k}$.

The Lascoux Pfaffian formula

$$
\begin{gathered}
\psi_{I}=\operatorname{Pf}\left(\psi_{i_{p}, i_{q}}\right) \\
\psi_{1235}=\psi_{12} \psi_{35}-\psi_{13} \psi_{25}+\psi_{15} \psi_{23} \\
=3 \times 126-10 \times 91+56 \times 10=28
\end{gathered}
$$

Another formula: consider the infinite Pascal matrix $M_{i, j}=\binom{i}{j}$,

$$
M=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
1 & 4 & 6 & 4 & 1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & \ldots
\end{array}\right)
$$

The Lascoux minor formula

$\psi_{I}=\sum_{J} M_{I, J}$, sum of minors with rows indexed by I.

$$
\psi_{1235}=\sum 4 \times 4 \text { minors of }\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 \\
1 & 5 & 10 & 10 & 5 & 1
\end{array}\right)=28
$$

Plugging Lascoux coefficients into the formula for $\delta(d, n, n-s)$, we get

$$
\delta(d, n, n-s)=\sum_{\substack{I=\left(\begin{array}{c}
\left.i_{1}<\cdots<i_{s}\right) \subset[n] \\
\Sigma I=d-s
\end{array}\right.}} \psi_{I} \psi_{[n] \backslash \prime},
$$

where $[n]=\{0, \ldots, n-1\}$ (Ranestad \& von Bothmer 2007).

Theorem (MMMSV 2020)

$\forall I$, the Lascoux coefficient $L P_{I}(n)=\psi_{[n] \backslash I}$ is polynomial in n.
Proof by induction formulas, or Pfaffian formulas:
Pfaffian formula

$$
L P_{l}(n)=P f\left(L P_{i_{p}, i_{q}}(n)\right)
$$

\rightsquigarrow Sturmfels-Uhler conjecture.

For the NRS conjecture, one needs a more precise statement. Define coefficients $s_{I, J}$, for I, J increasing sequences of length e, by the identity

$$
s_{\lambda(I)}(E \otimes L)=\sum_{J \leq I} s_{l, J} s_{\lambda(J)}(E) c_{1}(L)^{\Sigma I-\Sigma J}
$$

Theorem (MMMSV 2020)

$$
L P_{I}(n)=\sum_{J \leq I}\left(-\frac{1}{2}\right)^{\Sigma I-\Sigma J} s_{l, J} b_{J}(n)
$$

And this implies the NRS conjecture.
We have two proofs of this statement:
(1) By induction using our Pfaffian formulas for $L P_{l}(n)$.
(2) By applying a projection formula for Schur Q-polynomials due to Pragacz.

Schur Q-polynomials

One defines polynomials Q_{I} in variables x_{1}, \ldots, x_{n} as follows:

$$
\begin{gathered}
\sum_{i \geq 0} Q_{i}(x) h^{i}=\prod_{k=1}^{n} \frac{1+h x_{k}}{1-h x_{k}} \\
Q_{i, j}(x)=Q_{i}(x) Q_{j}(x)+2 \sum_{k>0}(-1)^{k} Q_{i-k}(x) Q_{j+k}(x), \\
Q_{l}(x)=\operatorname{Pf}\left(Q_{i_{p}, i_{q}}(x)\right)
\end{gathered}
$$

\rightsquigarrow Important in representation theory (of symmetric groups and Lie super-algebras) and Schubert calculus on classical Grassmannians.
Note that $Q_{l}\left(\frac{1}{2}, \cdots, \frac{1}{2}\right)=b_{l}(n)$.

By the usual splitting principle, we get characteristic classes $Q_{I}(\mathcal{E})$ for any complex vector bundle \mathcal{E}.

Projection formula (Pragacz 1994)

Let $\mathcal{E} \rightarrow X$ be a rank n vector bundle, $\pi: G^{s}(\mathcal{E}) \rightarrow X$ be the relative Grassmannian of rank s quotients, with \mathcal{K} and \mathcal{Q} the tautological bundles. Then

$$
Q_{I+1^{s}}(\mathcal{E})=\pi_{*}\left(c_{t o p}(\mathcal{K} \otimes \mathcal{Q}) Q_{I+1^{s}}(\mathcal{Q})\right)
$$

Application: suppose that $\mathcal{E}=\mathcal{E}_{0} \otimes L$ for a line bundle L and a trivial vector bundle \mathcal{E}_{0}. Then $G^{s}(\mathcal{E})=G^{s}\left(\mathbb{C}^{n}\right) \times X$ and

$$
\mathcal{K}=\mathcal{K}_{0} \boxtimes L, \quad \mathcal{Q}=\mathcal{Q}_{0} \boxtimes L
$$

The projection formula gives exactly the desired identity!!

Final remarks

(1) We have similar results for general square matrices and skew-symmetric matrices
\rightsquigarrow analogues of the NRS conjecture!
Same pattern by replacing complete quadrics by complete collineations and using projection formulas.
(2) Recall that the NRS conjecture should not be true since it applied the class formula in a context where it should fail.
\rightsquigarrow Why does it hold true?
There is an extension of the class formula using MacPherson's Euler obstruction classes ê(X) (Conan-Leung 2001). There should exist an extension of the Pragacz formula involving these obstruction classes!?

Thanks for your attention!

