On the automorphisms of Mukai varieties

Laurent Manivel and Thomas Dedieu

Institut de Mathématiques de Toulouse

Conference In Memoriam of Laurent Gruson May 10, 2021

For Laurent

Hâte-toi
Hâte-toi de transmettre
Ta part de merveilleux de rébellion de bienfaisance (René Char, Commune Présence)

Laurent's works around θ-representations

Laurent Gruson, Steven Sam, Jerzy Weyman, Moduli of abelian varieties, Vinberg θ-groups, and free resolutions, Commutative algebra, 419-469, 2013.

Laurent Gruson, Steven Sam, Alternating trilinear forms on a nine-dimensional space and degenerations of (3,3)-polarized Abelian surfaces, Proc. Lond. Math. Soc. 110 (2015), 755-785.

A project to be continued...
In April 2019, Laurent was ready to (re)start.

Prime Fano threefolds

Classification of prime Fano threefolds (Fano, Iskhovskih). Smooth projective threefolds X such that $\operatorname{Pic}(X)=\mathbb{Z}\left(-K_{X}\right)$ and $-K_{X}$ ample. When the anticanonical map is an embedding, codimension two linear sections are canonical curves of genus g.

g	X	g	X
2	Double sextic	7	section of Spinor variety
3	Quartic in \mathbb{P}^{4}	8	section of Grassmannian
4	Quadric \cap cubic in \mathbb{P}^{5}	9	section of Lagrangian Grass.
5	Three quadrics in \mathbb{P}^{6}	10	section of adjoint variety
6	$G(2,5) \cap Q \cap L$	12	tri-isotropic Grassmannian

Mukai: vector bundle method \rightsquigarrow classification of smooth complex projective manifolds X of dimension $n \geq 4$ such that

$$
\operatorname{Pic}(X)=\mathbb{Z} H \quad \text { and } \quad K_{X}=-(n-2) H .
$$

These Mukai varieties are extensions of prime Fano threefolds. Linear sections of Mukai varieties \rightsquigarrow Mukai varieties.
Conversely, for $g \geq 6$ there are Mukai varieties of maximal dimension.
For $7 \leq g \leq 10$ they are rational homogeneous spaces

$$
M_{g}=G / P \hookrightarrow \mathbb{P}\left(V_{g}\right)
$$

g	G	V_{g}	$\operatorname{dim}\left(V_{g}\right)$	M_{g}	$\operatorname{dim}\left(M_{g}\right)$
7	Spin $_{10}$	Δ_{+}^{2}	16	S_{10}	10
8	$S L_{6}$	$\wedge^{2} \mathbb{C}^{6}$	15	$G(2,6)$	8
9	$S p_{6}$	$\wedge^{\langle 3\rangle} \mathbb{C}^{6}$	14	$\mathrm{LG}(3,6)$	6
10	G_{2}	\mathfrak{g}_{2}	14	$X_{a d}\left(G_{2}\right)$	5

Automorphism groups

Main question for today:
What can be the automorphism group of a Mukai variety??
Focus on genus 7 to 10 .
Different behaviors when the codimension increases.

- $X=M_{g}$, then $\operatorname{Aut}(X)=G / Z(G)$.
- Hyperplane section: still a big automorphism group.
- Dimension bigger than critical: positive dimensional group.
- Small dimension: trivial? Not even clear for general prime Fano threefolds.

Theorem (Kuznetsov-Prokhorov-Shramov 2016)

If X is any smooth prime Fano threefold of genus g, with $7 \leq g \leq 10$, the automorphism group $\operatorname{Aut}(X)$ is finite.

Hyperplane sections

Start with $M_{g}=G / P \subset \mathbb{P}\left(V_{g}\right)$.
A hyperplane section is defined by a point in $\mathbb{P}\left(V_{g}^{\vee}\right)$, which is quasi-homogeneous: G acts with an open orbit.

Consequence

Up to isomorphism, \exists unique smooth hyperplane section X of M_{g}. Aut (X) is the generic stabilizer of the G-action on $\mathbb{P}\left(V_{g}^{\vee}\right)$.

How can we lift an automorphism $g \in \operatorname{Aut}(X)$ to G ?
Mukai: Take more sections to reduce to K3 surfaces of genus g. Then consider the Mukai bundle F, a uniquely defined stable vector bundle with special invariants. By unicity, the restrictions of F and $g^{*} F$ are isomorphic. By cohomological arguments, such an isomorphism lifts to M_{g}.

Caveat! First part is not true in genus $g=10$, where $V_{g}=\mathfrak{g}_{2}$ is the adjoint representation of G_{2}, and M_{g} is the adjoint variety.

In terms of Jordan theory:

- M_{g} is the projectivization of the minimal nilpotent orbit.
- A general hyperplane section is defined by a regular semisimple element in \mathfrak{g}_{2}.
- \rightsquigarrow the generic stabilizer is essentially a maximal torus.
- \rightsquigarrow one-dimensional family of hyperplane sections.

Adjoint varieties

More generally, there is an adjoint variety $M_{\mathfrak{g}} \subset \mathbb{P}(\mathfrak{g})$ for any simple Lie algebra \mathfrak{g} (with contact structure, etc.).

Singular hyperplane sections correspond to points on the dual variety $M_{\mathfrak{g}}^{\vee} \subset \mathbb{P}\left(\mathfrak{g}^{\vee}\right)=\mathbb{P}(\mathfrak{g})$, a G-invariant hypersurface.
By Chevalley's classical theorem,

$$
\mathfrak{g} / / G \simeq \mathfrak{t} / W
$$

and the equation of the dual is the product of the long roots.

Theorem (Prokhorov-Zaidenberg 2021)

The automorphism group of a smooth hyperplane section of $M_{\mathfrak{g}_{2}}$ is

$$
\left(G_{m}^{2}\right) \rtimes \mathbb{Z}_{2}, \quad\left(G_{m}^{2}\right) \rtimes \mathbb{Z}_{6}, \quad\left(G_{m} \times G_{a}\right) \rtimes \mathbb{Z}_{2}, \quad G L_{2} \rtimes \mathbb{Z}_{2}
$$

Below the critical codimension

Back to to X Mukai variety of genus $7 \leq g \leq 10$.
Naive dimension count \rightsquigarrow there is an integer c_{g} such that any linear section of M_{g} of codimension $<c_{g}$ must have positive dimensional automorphism group:

$$
c_{7}=4, \quad c_{8}=3, \quad c_{9}=c_{10}=2
$$

Expectation: the general linear section of codimension $\geq c_{g}$ should have trivial automorphism group?

Theorem 1 (Dedieu-M.)

The general linear section of M_{g} of codimension $>c_{g}$ has trivial automorphism group.

At the critical codimension

Corollary

The general prime Fano threefold of genus $g \geq 7$ has no automorphisms.
$g=6$ (Gushel-Mukai threefolds): Debarre-Kuznetsov 2018 $g=12$: Prokhorov 2021 (beware the Mukai-Umemura threefold has infinite automorphism group).

Most interesting case: when the codimension is critical.

Theorem 2 (Dedieu-M.)

The general section of M_{g} of codim c_{g} has automorphism group

$$
\mathbb{Z}_{2}^{2}, \quad \mathbb{C}^{*} \rtimes\left(\mathbb{Z}_{3}^{2} \rtimes \mathbb{Z}_{2}\right), \quad \mathbb{Z}_{2}^{4}, \quad 1 .
$$

General approach

Consider $X=M_{g} \cap L$. By Mukai's method, one shows that $\operatorname{Stab}_{G}(L) \rightarrow \operatorname{Aut}(X)$ is surjective. Then we observe that if $u \in \operatorname{Stab}_{G}(L)$, then also $u_{s}, u_{n} \in \operatorname{Stab}_{G}(L)$. So we wonder:

Can a non trivial semisimple/unipotent element in G stabilize a general subspace L of V_{g} of codimension c ?

This can be attacked systematically:

- If u is semisimple, it acts on V_{g} with eigenspaces E_{1}, \ldots, E_{m}, and the subspaces stabilized by g are parametrized by products of Grassmannians

$$
G\left(\ell_{1}, E_{1}\right) \times \cdots \times G\left(\ell_{m}, E_{m}\right)
$$

- If u is unipotent, similar control on the dimensions of the sets of stable subspaces of each dimension.

Stratifications

Finitely many unipotent orbits to consider, classified.
Similarly, one can stratify the semisimple orbits according to the sizes of their eigenspaces in V_{g}. In order to prove that the generic automorphism group is trivial in codimension c, enough to prove that for each stratum S,

$$
\operatorname{dim}(S)+d_{c}(S)<\operatorname{dim} G\left(c, V_{g}\right)
$$

\rightsquigarrow finite algorithm.
Surprise: there exist a few strata S for which

$$
\operatorname{dim}(S)+d_{c}(S)=\operatorname{dim} G\left(c, V_{g}\right)
$$

This happens in codimension $c=c_{g}$, only for semisimple strata, parametrizing automorphisms of order two for $g \neq 8$.

Genus 8

Recall $M_{8}=G(2,6) \subset \mathbb{P}\left(\wedge^{2} \mathbb{C}^{6}\right)$
\rightsquigarrow Consider $L \subset \wedge^{2} \mathbb{C}^{6}$ general of dimension 3 to 12 .
Unipotent orbits classified by partitions of $6 \rightsquigarrow$ cannot stabilize L.
Semisimple elements are determined by eigenvalues t_{1}, \ldots, t_{6}. Eigenvalues of the induced action on $\wedge^{2} \mathbb{C}^{6}$ are the $t_{i} t_{j}, i<j$ \rightsquigarrow one has to consider the multiplicities. Beware of:

- Degenerations: some t_{i} 's can coincide;
- Collapsings: $t_{i} t_{j}=t_{k} t_{\ell}$ with $(i, j) \cap(k, \ell)=\emptyset$.

Laborious but efficient!
Conclusion: L generic of dimension 4 to 11 has no stabilizer. Thus

$$
\operatorname{Aut}(X)=1 \quad \text { for } \quad X=G(2,6) \cap \mathbb{P}\left(L^{\perp}\right)
$$

general Mukai variety of genus 8 and dimension 3,4.

For $X=G(2,6) \cap \mathbb{P}\left(L^{\perp}\right)$ of dimension 5 , so $\operatorname{dim} L=3$, the conclusion is different.

By the previous analysis L can only be stabilized by:

- $s=z i d_{A}+z^{-1} i d_{B}$ for $\mathbb{C}^{6}=A \oplus B$ s.t. $L \subset A \otimes B \subset \wedge^{2} \mathbb{C}^{6}$.
- Some involutions $t=i d_{E}-i d_{F}$ for $\mathbb{C}^{6}=E \oplus F$ such that $L=L_{1} \oplus L_{2}$ with $L_{1} \subset \wedge^{2} E \oplus \wedge^{2} F$ and $L_{2} \subset E \otimes F$.
- Order 3 elements $u=i d_{P}+\operatorname{jid}_{Q}+j^{2} i d_{R}$ with $\mathbb{C}^{6}=P \oplus Q \oplus R$, such that L is the sum of three lines contained in the three (five dimensional) eigenspaces of the induced action on $\wedge^{2} \mathbb{C}^{6}$.
\rightsquigarrow How can such transformations fit together?
The first type gives the connected component $\mathbb{C}^{*} \rightsquigarrow$ The pair (A, B) such that $L \subset A \otimes B$ must be unique (normalization).

Genus 8, continued

Special feature for this case:
The Pfaffian cubic cuts on $\mathbb{P}(L)$ a plane cubic C and $\operatorname{Stab}(L)$ has to act on C. How?

- Automorphisms of the first type act trivially.
- Involutions of the second type act as symmetries w. respect to inflexion points of C.
- Order three elements act as translations by 3-torsion points.

Hence the conclusion:

$$
\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X) \simeq \operatorname{Aut}_{\text {lin }}(C) \simeq\left(\mathbb{Z}_{3}\right)^{2} \rtimes \mathbb{Z}_{2}
$$

Genus 7

Here M_{7} is the spinor variety of dimension 10 , index 8 in \mathbb{P}^{15}. Small codimensional linear sections were considered before.

- In codimension 1, a unique smooth section; quasi-homogeneous with non reductive automorphism group.
- In codimension 2, two different types of smooth sections.

The general one is quasi-homogeneous under $G_{2} \times P S L_{2}$ (Fu-M. 2018). The special one is a compactification of \mathbb{C}^{8} (Fu-Hwang 2018), with non reductive automorphism group. \rightsquigarrow Counter-examples to rigidity properties for prime Fano manifolds of high index.

- In codimension 3, four different types of smooth sections. Most special one is a compactification of \mathbb{C}^{7}. General one has automorphism group $P S L_{2}^{2}$, not quasi-homogeneous.

Genus 7, codimension four

We focus on codimension $4 \rightsquigarrow$ Fano sixfolds X of index four, defined by a general $L \subset \Delta$, with Δ the spin representation. The analysis of semisimple/unipotent elements yields:
L may be stabilized by finitely many involutions $s_{U}=i d_{U}-i d_{U \perp}$ in $S O_{10}$, where U is some non-degenerate four plane in \mathbb{C}^{10}; \rightsquigarrow splits Δ into two eight dimensional eigenspaces Δ_{+}and Δ_{-}, and $L=L_{+} \oplus L_{-}$for two planes $L_{ \pm} \subset \Delta_{ \pm}$.

To understand: do these involutions really exist in general? if yes, how many of them? which group do they generate?
The answer to the first question is YES by a dominance argument.
The answer to the last two is given by the following Theorem.

Genus 7, continued

Main Theorem for $g=7$

There exist three non degenerate orthogonal planes A, B, C s.t.

$$
\operatorname{Aut}(X)=\left\{1, s_{A \oplus B}, s_{B \oplus C}, s_{C \oplus A}\right\} \simeq \mathbb{Z}_{2}^{2}
$$

Rough sketch of proof.
$\operatorname{dim} G(4, \Delta)=4 \times(16-4)=48$. For three orthogonal planes in \mathbb{C}^{10} there are $16+12+8=36$ parameters.
When fixed, the spin representation decomposes into 4 four-dimensional spaces and L must meet each of them along a line, hence 4×3 extra parameters. Since $36+12=48$ we expect a finite non zero number of triples (A, B, C) for each L.
This is proved to be correct by computing a suitable differential.

Genus 7, conclusion

Then L is stabilized by the three involutions $s_{A \oplus B}, s_{B \oplus C}, s_{C \oplus A}$. If t is another involution stabilizing L, the products
$t s_{A \oplus B}, t s_{B \oplus C}, t s_{C \oplus A}$ must be involutions of the same type.
In particular t commutes with $s_{A \oplus B}, s_{B \oplus C}, s_{C \oplus A}$
\rightsquigarrow more structure for L and contradiction by dimension count.
As a consequence the triple (A, B, C) is unique.
Remark. For each non trivial involution s in $\operatorname{Aut}(X)$, the fixed locus $\operatorname{Fix}(s)$ is the union of two quartic surface scrolls in X (codimension two sections of $\mathbb{P}^{1} \times \mathbb{P}^{3}$).
This comes from the exceptional isomorphisms

$$
\mathfrak{s o}(U) \simeq \mathfrak{s l}_{2} \times \mathfrak{s l}_{2}, \quad \mathfrak{s o}\left(U^{\perp}\right) \simeq \mathfrak{s l}_{4}
$$

Genus 9

Recall M_{9} is the Lagrangian Grassmannian $L G(3,6)$, of dimension 6 , index 4 in \mathbb{P}^{13}. Parametrizes three-planes in \mathbb{C}^{6} that are isotropic w.t. to a skew-symmetric form ω.
Get Plücker embedding inside $\mathbb{P}\left(\wedge^{\langle 3\rangle} \mathbb{C}^{6}\right)$ where

$$
\wedge^{\langle 3\rangle} \mathbb{C}^{6}=\operatorname{Ker}\left(\wedge^{3} \mathbb{C}^{6} \xrightarrow{\omega} \mathbb{C}^{6}\right) .
$$

$L G(3,6)$ is a variety with one apparent double point (VOADP): a unique bisecant to a general point.

There is a unique smooth hyperplane section of $\operatorname{LG}(3,6)$, whose automorphism group is $P S L_{3}$.
We focus on codimension two sections, defined by a (co)dimension two subspace $L \subset \wedge^{\langle 3\rangle} \mathbb{C}^{6}$.

Genus 9, continued

Analysis of semisimple/unipotent elements \rightsquigarrow a generic L can only be stabilized by involutions, of two possible types:

- $s_{A}=i d_{A}-i d_{A^{\perp}}$ for $A \subset \mathbb{C}^{6}$ a non isotropic plane,
- $t=i d_{E}-i d_{F}$ for $\mathbb{C}^{6}=E \oplus F$ a decomposition into Lagrangian subspaces.
These possibilities can be realized in at most finitely many ways.
How many? For type I, the answer is given by the

Normalization Lemma

There exists a unique triple (A, B, C) of transverse planes in \mathbb{C}^{6} such that $L \subset A \otimes B \otimes C$.

Genus 9, continued

\rightsquigarrow Chain of VOADP's:

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{1} \times \mathbb{Q}^{3} \subset L G(3,6) \subset G(3,6)
$$

Main Theorem for $g=9$

The stabilizer of a general L is isomorphic with \mathbb{Z}_{2}^{4}, with

- 3 type I involutions s_{A}, s_{B}, s_{C},
- 12 type II involutions.

Geometrically, the corresponding involutions in $\operatorname{Aut}(X)$ can be distinguished by their fixed locus:

- a del Pezzo surface of degree four in type I,
- the union of two Veronese surfaces in type II.

Relations with θ-representations

Question: Where does all this come from??
Consider the situation where a simple Lie-algebra \mathfrak{g} is endowed with an automorphism θ of finite order p. This yields a \mathbb{Z}_{p}-grading

$$
\mathfrak{g}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{p-1}
$$

Then $\left(G_{0}, \mathfrak{g}_{1}\right)$ is called a θ-representation.
One can define a Cartan suspace of (\mathfrak{g}, θ) as a maximal subspace $\mathfrak{h} \subset \mathfrak{g}_{1}$ of commuting semisimple elements \rightsquigarrow generalized Weyl group $W=N(H) / H$ (a complex reflection group).

Generalized Chevalley theorem

$$
\mathfrak{g}_{1} / / G_{0} \simeq \mathfrak{h} / W
$$

Examples of θ-representations

For example, we have the following gradings:

$$
\begin{gathered}
\mathfrak{f}_{4}=\mathfrak{s l}_{2} \times \mathfrak{s p}_{6} \oplus\left(\mathbb{C}^{2} \otimes \wedge^{\langle 3\rangle} \mathbb{C}^{6}\right), \\
\mathfrak{e}_{7}=\mathfrak{s l}_{3} \times \mathfrak{s l}_{6} \oplus\left(\mathbb{C}^{3} \otimes \wedge^{2} \mathbb{C}^{6}\right) \oplus\left(\mathbb{C}^{3} \otimes \wedge^{2} \mathbb{C}^{6}\right)^{\vee}, \\
\mathfrak{e}_{8}=\mathfrak{s l}_{4} \times \mathfrak{s o}_{10} \oplus\left(\mathbb{C}^{4} \otimes \Delta\right) \oplus\left(\wedge^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{10}\right) \oplus\left(\mathbb{C}^{4} \otimes \Delta\right)^{\vee} .
\end{gathered}
$$

This means that

- codimension two sections of $L G(3,6)$ are connected to \mathfrak{f}_{4},
- codimension three sections of $G(2,6)$ are connected to \mathfrak{e}_{7},
- codimension four sections of Δ are connected to \mathfrak{e}_{8} !
\rightsquigarrow The generic automorphism groups in critical codimension are what remains of the generalized Weyl groups.

Thanks for your attention!

