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For Laurent

Hâte-toi
Hâte-toi de transmettre
Ta part de merveilleux de rébellion de bienfaisance

(René Char, Commune Présence)
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Laurent’s works around θ-representations

Laurent Gruson, Steven Sam, Jerzy Weyman, Moduli of
abelian varieties, Vinberg θ-groups, and free resolutions,
Commutative algebra, 419–469, 2013.

Laurent Gruson, Steven Sam, Alternating trilinear forms on a
nine-dimensional space and degenerations of (3, 3)-polarized
Abelian surfaces, Proc. Lond. Math. Soc. 110 (2015), 755–785.

A project to be continued...
In April 2019, Laurent was ready to (re)start.
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Prime Fano threefolds

Classification of prime Fano threefolds (Fano, Iskhovskih).
Smooth projective threefolds X such that Pic(X ) = Z(−KX )
and −KX ample. When the anticanonical map is an embedding,
codimension two linear sections are canonical curves of genus g .

g X g X
2 Double sextic 7 section of Spinor variety
3 Quartic in P4 8 section of Grassmannian
4 Quadric ∩ cubic in P5 9 section of Lagrangian Grass.
5 Three quadrics in P6 10 section of adjoint variety
6 G (2, 5) ∩ Q ∩ L 12 tri-isotropic Grassmannian

Mukai: vector bundle method  classification of smooth complex
projective manifolds X of dimension n ≥ 4 such that

Pic(X ) = ZH and KX = −(n − 2)H.
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These Mukai varieties are extensions of prime Fano threefolds.
Linear sections of Mukai varieties  Mukai varieties.

Conversely, for g ≥ 6 there are Mukai varieties of maximal
dimension.
For 7 ≤ g ≤ 10 they are rational homogeneous spaces

Mg = G/P ↪→ P(Vg ).

g G Vg dim(Vg ) Mg dim(Mg )
7 Spin10 ∆+ 16 S10 10
8 SL6 ∧2C6 15 G (2, 6) 8

9 Sp6 ∧〈3〉C6 14 LG(3,6) 6
10 G2 g2 14 Xad(G2) 5
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Automorphism groups

Main question for today:
What can be the automorphism group of a Mukai variety??

Focus on genus 7 to 10.
Different behaviors when the codimension increases.

X = Mg , then Aut(X ) = G/Z (G ).

Hyperplane section: still a big automorphism group.

Dimension bigger than critical: positive dimensional group.

Small dimension: trivial? Not even clear for general prime
Fano threefolds.

Theorem (Kuznetsov-Prokhorov-Shramov 2016)

If X is any smooth prime Fano threefold of genus g , with
7 ≤ g ≤ 10, the automorphism group Aut(X ) is finite.
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Hyperplane sections

Start with Mg = G/P ⊂ P(Vg ).
A hyperplane section is defined by a point in P(V ∨g ), which is
quasi-homogeneous: G acts with an open orbit.

Consequence

Up to isomorphism, ∃ unique smooth hyperplane section X of Mg .
Aut(X ) is the generic stabilizer of the G -action on P(V ∨g ).

How can we lift an automorphism g ∈ Aut(X ) to G?

Mukai: Take more sections to reduce to K3 surfaces of genus g .
Then consider the Mukai bundle F , a uniquely defined stable
vector bundle with special invariants. By unicity, the restrictions of
F and g∗F are isomorphic. By cohomological arguments, such an
isomorphism lifts to Mg .
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Caveat! First part is not true in genus g = 10, where Vg = g2 is
the adjoint representation of G2, and Mg is the adjoint variety.

G2/B

P1

||zz
zz
zz
zz P1

''NN
NNN

NNN
NNN

Q5 M10 = Xad(G2)

In terms of Jordan theory:

Mg is the projectivization of the minimal nilpotent orbit.

A general hyperplane section is defined by a regular
semisimple element in g2.

 the generic stabilizer is essentially a maximal torus.

 one-dimensional family of hyperplane sections.
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Adjoint varieties

More generally, there is an adjoint variety Mg ⊂ P(g) for any
simple Lie algebra g (with contact structure, etc.).

Singular hyperplane sections correspond to points on the dual
variety M∨g ⊂ P(g∨) = P(g), a G -invariant hypersurface.

By Chevalley’s classical theorem,

g//G ' t/W

and the equation of the dual is the product of the long roots.

Theorem (Prokhorov-Zaidenberg 2021)

The automorphism group of a smooth hyperplane section of Mg2 is

(G 2
m) o Z2, (G 2

m) o Z6, (Gm × Ga) o Z2, GL2 o Z2.
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Below the critical codimension

Back to to X Mukai variety of genus 7 ≤ g ≤ 10.

Naive dimension count  there is an integer cg such that any
linear section of Mg of codimension < cg must have positive
dimensional automorphism group:

c7 = 4, c8 = 3, c9 = c10 = 2.

Expectation: the general linear section of codimension ≥ cg should
have trivial automorphism group?

Theorem 1 (Dedieu-M.)

The general linear section of Mg of codimension > cg has trivial
automorphism group.
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At the critical codimension

Corollary

The general prime Fano threefold of genus g ≥ 7 has no
automorphisms.

g = 6 (Gushel-Mukai threefolds): Debarre-Kuznetsov 2018
g = 12: Prokhorov 2021 (beware the Mukai-Umemura threefold
has infinite automorphism group).

Most interesting case: when the codimension is critical.

Theorem 2 (Dedieu-M.)

The general section of Mg of codim cg has automorphism group

Z2
2, C∗ o (Z2

3 o Z2), Z4
2, 1.
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General approach

Consider X = Mg ∩ L. By Mukai’s method, one shows that
StabG (L)→ Aut(X ) is surjective. Then we observe that if
u ∈ StabG (L), then also us , un ∈ StabG (L). So we wonder:

Can a non trivial semisimple/unipotent element in G stabilize a
general subspace L of Vg of codimension c?

This can be attacked systematically:

If u is semisimple, it acts on Vg with eigenspaces E1, . . . ,Em,
and the subspaces stabilized by g are parametrized by
products of Grassmannians

G (`1,E1)× · · · × G (`m,Em).

If u is unipotent, similar control on the dimensions of the sets
of stable subspaces of each dimension.
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Stratifications

Finitely many unipotent orbits to consider, classified.
Similarly, one can stratify the semisimple orbits according to the
sizes of their eigenspaces in Vg . In order to prove that the generic
automorphism group is trivial in codimension c , enough to prove
that for each stratum S ,

dim(S) + dc(S) < dimG (c ,Vg ).

 finite algorithm.

Surprise: there exist a few strata S for which

dim(S) + dc(S) = dimG (c ,Vg ).

This happens in codimension c = cg , only for semisimple strata,
parametrizing automorphisms of order two for g 6= 8.
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Genus 8

Recall M8 = G (2, 6) ⊂ P(∧2C6)

 Consider L ⊂ ∧2C6 general of dimension 3 to 12.

Unipotent orbits classified by partitions of 6  cannot stabilize L.

Semisimple elements are determined by eigenvalues t1, . . . , t6.
Eigenvalues of the induced action on ∧2C6 are the ti tj , i < j
 one has to consider the multiplicities. Beware of:

Degenerations: some ti ’s can coincide;

Collapsings: ti tj = tkt` with (i , j) ∩ (k , `) = ∅.
Laborious but efficient!
Conclusion: L generic of dimension 4 to 11 has no stabilizer.
Thus

Aut(X ) = 1 for X = G (2, 6) ∩ P(L⊥)

general Mukai variety of genus 8 and dimension 3, 4.
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For X = G (2, 6) ∩ P(L⊥) of dimension 5, so dim L = 3, the
conclusion is different.

By the previous analysis L can only be stabilized by:

s = zidA + z−1idB for C6 = A⊕ B s.t. L ⊂ A⊗ B ⊂ ∧2C6.

Some involutions t = idE − idF for C6 = E ⊕ F such that
L = L1 ⊕ L2 with L1 ⊂ ∧2E ⊕ ∧2F and L2 ⊂ E ⊗ F .

Order 3 elements u = idP + jidQ + j2idR with
C6 = P ⊕ Q ⊕ R, such that L is the sum of three lines
contained in the three (five dimensional) eigenspaces of the
induced action on ∧2C6.

 How can such transformations fit together?

The first type gives the connected component C∗  The pair
(A,B) such that L ⊂ A⊗ B must be unique (normalization).
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Genus 8, continued

Special feature for this case:
The Pfaffian cubic cuts on P(L) a plane cubic C and Stab(L) has
to act on C . How?

Automorphisms of the first type act trivially.

Involutions of the second type act as symmetries w. respect
to inflexion points of C .

Order three elements act as translations by 3-torsion points.

Hence the conclusion:

Aut(X )/Aut0(X ) ' Autlin(C ) ' (Z3)2 o Z2.
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Genus 7

Here M7 is the spinor variety of dimension 10, index 8 in P15.
Small codimensional linear sections were considered before.

In codimension 1, a unique smooth section;
quasi-homogeneous with non reductive automorphism group.

In codimension 2, two different types of smooth sections.
The general one is quasi-homogeneous under G2 × PSL2

(Fu-M. 2018). The special one is a compactification of C8

(Fu-Hwang 2018), with non reductive automorphism group.
 Counter-examples to rigidity properties for prime Fano
manifolds of high index.

In codimension 3, four different types of smooth sections.
Most special one is a compactification of C7. General one has
automorphism group PSL2

2, not quasi-homogeneous.
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Genus 7, codimension four

We focus on codimension 4 Fano sixfolds X of index four,
defined by a general L ⊂ ∆, with ∆ the spin representation.

The analysis of semisimple/unipotent elements yields:

L may be stabilized by finitely many involutions sU = idU − idU⊥

in SO10, where U is some non-degenerate four plane in C10;
 splits ∆ into two eight dimensional eigenspaces ∆+ and ∆−,
and L = L+ ⊕ L− for two planes L± ⊂ ∆±.

To understand: do these involutions really exist in general?
if yes, how many of them? which group do they generate?

The answer to the first question is YES by a dominance argument.
The answer to the last two is given by the following Theorem.
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Genus 7, continued

Main Theorem for g = 7

There exist three non degenerate orthogonal planes A,B,C s.t.

Aut(X ) = {1, sA⊕B , sB⊕C , sC⊕A} ' Z2
2.

Rough sketch of proof.
dimG (4,∆) = 4× (16− 4) = 48. For three orthogonal planes in
C10 there are 16 + 12 + 8 = 36 parameters.

When fixed, the spin representation decomposes into 4
four-dimensional spaces and L must meet each of them along a
line, hence 4× 3 extra parameters. Since 36 + 12 = 48 we expect
a finite non zero number of triples (A,B,C ) for each L.

This is proved to be correct by computing a suitable differential.
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Genus 7, conclusion

Then L is stabilized by the three involutions sA⊕B , sB⊕C , sC⊕A.
If t is another involution stabilizing L, the products
tsA⊕B , tsB⊕C , tsC⊕A must be involutions of the same type.
In particular t commutes with sA⊕B , sB⊕C , sC⊕A
 more structure for L and contradiction by dimension count.
As a consequence the triple (A,B,C ) is unique.

Remark. For each non trivial involution s in Aut(X ), the fixed
locus Fix(s) is the union of two quartic surface scrolls in X
(codimension two sections of P1 × P3).
This comes from the exceptional isomorphisms

so(U) ' sl2 × sl2, so(U⊥) ' sl4.
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Genus 9

Recall M9 is the Lagrangian Grassmannian LG (3, 6), of dimension
6, index 4 in P13. Parametrizes three-planes in C6 that are
isotropic w.t. to a skew-symmetric form ω.
Get Plücker embedding inside P(∧〈3〉C6) where

∧〈3〉C6 = Ker(∧3C6 ω−→ C6).

LG (3, 6) is a variety with one apparent double point (VOADP):
a unique bisecant to a general point.

There is a unique smooth hyperplane section of LG (3, 6), whose
automorphism group is PSL3.

We focus on codimension two sections, defined by a (co)dimension
two subspace L ⊂ ∧〈3〉C6.
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Genus 9, continued

Analysis of semisimple/unipotent elements  a generic L can only
be stabilized by involutions, of two possible types:

sA = idA − idA⊥ for A ⊂ C6 a non isotropic plane,

t = idE − idF for C6 = E ⊕ F a decomposition into
Lagrangian subspaces.

These possibilities can be realized in at most finitely many ways.

How many? For type I, the answer is given by the

Normalization Lemma

There exists a unique triple (A,B,C ) of transverse planes in C6

such that L ⊂ A⊗ B ⊗ C .
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Genus 9, continued

 Chain of VOADP’s:

P1 × P1 × P1 ⊂ P1 ×Q3 ⊂ LG (3, 6) ⊂ G (3, 6).

Main Theorem for g = 9

The stabilizer of a general L is isomorphic with Z4
2, with

3 type I involutions sA, sB , sC ,

12 type II involutions.

Geometrically, the corresponding involutions in Aut(X ) can be
distinguished by their fixed locus:

a del Pezzo surface of degree four in type I,

the union of two Veronese surfaces in type II.
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Relations with θ-representations

Question: Where does all this come from??

Consider the situation where a simple Lie-algebra g is endowed
with an automorphism θ of finite order p. This yields a Zp-grading

g = g0 ⊕ g1 ⊕ · · · ⊕ gp−1.

Then (G0, g1) is called a θ-representation.

One can define a Cartan suspace of (g, θ) as a maximal subspace
h ⊂ g1 of commuting semisimple elements  generalized Weyl
group W = N(H)/H (a complex reflection group).

Generalized Chevalley theorem

g1//G0 ' h/W .
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Examples of θ-representations

For example, we have the following gradings:

f4 = sl2 × sp6 ⊕ (C2 ⊗ ∧〈3〉C6),

e7 = sl3 × sl6 ⊕ (C3 ⊗ ∧2C6)⊕ (C3 ⊗ ∧2C6)∨,

e8 = sl4 × so10 ⊕ (C4 ⊗∆)⊕ (∧2C4 ⊗ C10)⊕ (C4 ⊗∆)∨.

This means that

codimension two sections of LG (3, 6) are connected to f4,

codimension three sections of G (2, 6) are connected to e7,

codimension four sections of ∆ are connected to e8!

 The generic automorphism groups in critical codimension are
what remains of the generalized Weyl groups.

Laurent Manivel and Thomas Dedieu Mukai varieties



Thanks for your attention!
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