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Introduction

Motivations

Main goal: Construct interesting varieties.

In complex algebraic geometry: classification problems.

Need to construct varieties of a given class. Typically Fano
varieties.

Very special varieties. For example with particular symmetries.

Main ingredients:

Vector bundles: very classical.

Lie theory, representations of algebraic groups: even more
classical.

 New tools by putting them together.
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Basics on vector bundles

Let E be a rank e vector bundle over a variety X . So π : E → X is
locally trivial and each fiber Ex = π−1(x) is identified with a fixed
vector space F .

Examples. TX tangent bundle, rank = dimension of X ,

KX = det(ΩX ) = det(TX )∗ canonical bundle (fundamental
invariant), rank one i.e. line bundle.

A section s of E is a map s : X → E such that π ◦ s = idX , i.e.
s(x) is a point in the vector space Ex . Its zero-locus is

Z (s) := {x ∈ X , s(x) = 0 ∈ Ex}.

Locally over U ⊂ X , decompose s(x) = s1(x)f1 + · · ·+ se(x)fe , for
f1, . . . , fe a basis of F . Then Z = Z (s) is defined by the vanishing
of the e functions s1(x), . . . , se(x).
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Zero Loci of sections, basic examples

If everywhere transverse, then:

Z is smooth (possibly empty),

the codimension of Z is equal to the rank of E ,

the structure sheaf of Z can be resolved by a Koszul complex

0→ ∧eE ∗ s→ · · · → E ∗
s→ OX → OZ → 0,

the canonical bundle of Z is given by the adjunction formula

KZ = KX ⊗ det(E )|Z .

Applications.

Global construction of many interesting varieties.
With access to lots of informations on their geometry.
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Zero Loci of sections, more examples

Basic examples.

Zero loci of sections of line bundles (rank one) are
hypersurfaces.

On the Grassmannian X = G (r , n), let T be the tautological
vector bundle (Tx = U if x represents U ⊂ Cn). A linear form
φ on Cn defines a section sφ of the dual vector bundle T ∗, and

Z (sφ) = {U ⊂ Ker(φ)} ' G (r , n − 1).

X = G (r , n), E = ∧2T ∗.
A skew-symmetric two-form ω on Cn gives a section sω, and

Z (sω) = IGω(r , n)

is an isotropic Grassmannian. For n even, ω of maximal rank,
this is again a homogeneous variety, under Sp(ω).
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Zero Loci of sections, more and more examples

More examples

X = G (4, 7), E = ∧3T ∗.
A skew-symmetric three-form Ω defines a section sΩ, and for
Ω general Z = Z (sΩ) is an eightfold with KZ = OZ (−4).
This is a Fano variety, quasi-homogeneous under G2, actually
a smooth completion of the symmetric space G2/SO3 × SO3.

X = G (3, 7), E = ∧2T ∗ ⊕ ∧2T ∗ ⊕ ∧2T ∗.
A triple θ = (θ1, θ2, θ3) of skew-symmetric two-forms defines a
section sθ, and

Z = Z (sθ) = IGθ1(3, 7) ∩ IGθ2(3, 7) ∩ IGθ3(3, 7)

is a threefold with KZ = OZ (−1): a prime Fano threefold.
Actually a whole family of such threefolds.
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Zero Loci of sections

Still more examples

X = G (2, 6), E = S2T ∗ ⊕ S2T ∗.
A pair of quadrics q = (q1, q2) in 6 variables defines a section
sq, and Z = Z (sq) is a surface parametrizing projective lines
contained in Q1 ∩ Q2 ⊂ P5.
 KZ = OZ : Z is an Abelian surface (Reid 1972).

X = G (2, 6), E = S3T ∗.
A degree three polynomial P in 6 variables defines a section
sP , and Z = Z (sP) is a fourfold parametrizing projective lines
in the cubic hypersurface X (P) ⊂ P5.
 KZ = OZ : Z is hyperKähler (Beauville-Donagi 1985).
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Zero Loci of sections, constraints

More restricted goals

Construct Fano manifolds, KZ < 0 (finite problem).

Construct Calabi-Yau and hyperKähler manifolds, KZ = 0.

Constraints: double bind!

If E has enough sections, then det(E ) > 0.

We want KZ = KX ⊗ det(E )|Z ≤ 0, so need KX < 0.

So we need low rank vector bundles on Fano manifolds,
positive but not too much!

Classical conjecture: low rank vector bundles on projective
spaces are split (sums of lines bundles).

 Need more flexibility!
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Determinantal Loci

Suppose E = Hom(F ,G ) for two vector bundles F ,G on X .
A section of E is a morphism ϕ : F → G , with variable rank.
So one defines the k-th determinantal locus

Dk(ϕ) := {x ∈ X , rank(ϕx) ≤ k}.

For ϕ general, Dk = Dk(ϕ) is no longer smooth, but

the codimension of Dk is (f − k)(g − k),

the singular locus of Dk is

Sing(Dk) = Dk−1,

if (f − k)(g − k) < dim(X ) < (f − k + 1)(g − k + 1), then
Dk−1 = ∅, Dk is smooth, and φ has constant rank on Dk .
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Determinantal Loci, continued

So there is an exact sequence

0→ A→ F
ϕ→ G → B → 0,

on Dk , with A = Ker(ϕ) and B = Coker(ϕ). Then the normal
bundle of Dk is N = Hom(A,B), and

KDk
= KX |Dk

⊗ det(N).

But KDk
difficult to control: not a restriction!

Exception: f = g , since then

KDk
= KX ⊗ det(F ∗)g−k ⊗ det(G )f−k|Dk

.

Advantage. Can construct interesting loci (CY threefolds) just
from line bundles or very simple vector bundles.
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Principal bundles

For determinantal loci, we have used the fact that E = Hom(F ,G )
has extra structure  the rank is the invariant that describes in
which stratum the section lands at any given point.

More generally: suppose that E has extra structure, encoded by
some representation V of some complex Lie group G .

In technical language, we need a G -principal bundle P → X , and
E = EV is the associated bundle to P and the representation V .
Then each fiber of E can be identified with V , not canonically but
only up to the action of G .

Typical example: G = GL(f ,C) and V = ∧kCf . Then this is
equivalent to asking that there exists a vector bundle F of rank f
on X , such that E ' ∧kF .
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Orbital Degeneracy Loci, definition

For a section s of E , the stratum in which s lands at a given point
x ∈ X is the G -orbit in V to which sx belongs.
 Suggests to define, for Y ⊂ V any closed G -invariant subset,

DY (s) := {x ∈ X , sx ∈ Y ⊂ V ' Ex}.

Typically, Y will be an orbit closure. In this case we get an orbital
degeneracy locus (ODL).

Facts. For s general (transverse),

the codimension of DY (s) ⊂ X equals that of Y ⊂ V ,

the singular locus of DY (s) is

Sing(DY (s)) = DSing(Y )(s).

Laurent Manivel Introduction to Orbital Degeneracy Loci



Orbital Degeneracy Loci, problems

Several problems to deal with.

Problem A. Understand G -orbits in a G -representation V .

 Hopeless in general! We will first restrict to parabolic
representations, which have finitely many orbits.

Problem B. Describe the geometry of the G -orbit closures.

 In particular, describe the singularities. Or rather, resolve
the singularities.

Problem C. Construct varieties Z with KZ ≤ 0 as ODL, or
resolutions of ODL.

 As before, we will need to start from low rank vector
bundles (possibly just line bundles) on Fano varieties.
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Classification of orbits

Problem A (classification of orbits) is very classical.

G simple complex Lie group  complete classification of
representations with finitely many G -orbits (Kac 1981).
Most of them are parabolic (' gradings of simple Lie algebras).
Moreover, orbits have been described explicitly by various means
(e.g., by normal forms).

Examples

1 G = Gl(f ,C), V = Cf : two orbits  zero loci of sections.

2 G = Gl(f ,C)× Gl(g ,C), V = Hom(Cf ,Cg ): orbits defined
by the rank  determinantal loci of morphisms.

3 G = Gl(f ,C), V = ∧2Cf : rank  Pfaffian loci.

4 G = Gl(f ,C), V = ∧3Cf : finitely many orbits only for f ≤ 8.
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Descriptions of orbits

Problem B (geometry of orbits) was partially solved by Weyman
& al, in terms of Kempf collapsings.

Method. Let P ⊂ G be a parabolic subgroup and let U ⊂ V be a
P-stable subspace. The G -translates of U form a vector bundle U
over the flag manifold G/P.

U
p

}}{{
{{
{{
{{ q

%%KK
KKK

KKK
KKK

G/P Y ⊂ V .

The map q is proper, so Y = q(U) is closed and G -stable  orbit
closure. If q is birational, it is a resolution of singularities.
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A toy example, 1

3-forms in 6 variables.

Start with e6, the 78-dimensional exceptional simple complex Lie
algebra. The simple root α2 defines a Z-grading

e6 = C⊕ ∧3C6 ⊕ gl6 ⊕ ∧3C6 ⊕ C.

e6 ◦ ◦ ◦ ◦ ◦

◦•α2

 ◦ ◦ ◦ ◦ ◦•
∧3C6

Orbits of GL(6,C) in ∧3C6 are traces of nilpotent orbits in e6

 finiteness!
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A toy example, 2

3-forms in 6 variables, continued

Let G = GL(6,C) act on V = ∧3C6. The orbit closures are

Y20 = {0} ⊂ Y10 ⊂ Y5 ⊂ Y1 ⊂ Y0 = V .

The orbits have the following representatives (eijk = ei ∧ ej ∧ ek):

O10 e123 decomposable
O5 e123 + e145 partially decomposable
O1 e124 + e135 + e236 tangent or dual quartic
O0 e123 + e456 generic

Taking closure: Y5 = Ō5 = O5 ∪ O10 ∪ O20 = O5 ∪ Y10.
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A toy example, 3

The variety Y5 is singular along Y10. One can resolve the
singularities by three Kempf collapsings p, p+, p−.

Z
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BB

B

��
p

��
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����
��
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p+   A
AA

AA
AA

A
F Z−

p−~~}}
}}
}}
}}

  A
AA

AA
AA

P Y5 P∨

Here P = P(C6), P∨ = P(C6)∗ and F ⊂ P× P∨ is the flag variety
parametrizing pairs (line ⊂ hyperplane).
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A toy example, 4

The desingularizations Z ,Z+,Z− are total spaces of homogeneous
vector bundles E , E+, E−, where

E+(U1) = U1 ∧ (∧2C6), E−(U5) = ∧3U5,

E(U1 ⊂ U5) = U1 ∧ (∧2U5).

Observations.

1 p−1
± (e123) ' P2, so p± is a small contraction,

2 p−1(e123) ' P2 × P2, so p is a divisorial contraction,

3 the determinant of E− is

det(E−) = ∧10(∧3U5) = det(U5)6 = KP∨ ,

and therefore p− (and p+ as well) is a crepant resolution.
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A toy example, 5

Resolving the structure sheaf

By pushing forward Koszul complexes from Z , Weyman & al
showed that the structure sheaf of Y5 admits a very beautiful
self-dual resolution

0→ OV (−10)→ V ⊗OV (−7)→ sl6 ⊗OV (−6)→ · · ·

· · · → sl6 ⊗OV (−4)→ V ⊗OV (−3)→ OV → OY5 → 0.

Allows to compute the Hilbert function, etc.
 very complete understanding, useful for applications to Problem
C.
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Nilpotent orbits

Many parabolic representations and many orbits in each of them
 rich playground.
Only a small proportion have crepant resolutions.

Representations with infinitely many orbits are also interesting.
Typically:

ΩG/P

p

||xx
xx
xx
xx q

&&MM
MMM

MMM
MM

G/P ŌP ⊂ g.

Nilpotent orbits OP obtained from parabolic subgroups P of G are
called Richardson orbits. If q is birational, it is automatically
crepant since KG/P = det(ΩG/P)!
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Application: constructing Fano or CY varieties

Problem C can now be solved.

Suppose we have a rank 6 vector bundle F on a variety X , and a
generic section s of E = ∧3F . The ODL D = DY5(s) is the locus
of points x ∈ X where sx ∈ ∧3Fx becomes partially decomposable.

D has codimension 5, and is singular in codimension 5,

D admits explicit resolutions of singularities,

D is Gorenstein with canonical bundle

KD = KX ⊗ (detF )5
|D .

For example we can construct (a dozen of) Calabi-Yau fourfolds
from (X ,F ), dim(X ) = 9, rank(F ) = 6, KX ⊗ (detF )5 trivial.
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3-forms in 9 variables, 1

The action of G = GL(9,C) on V = ∧3C9 has infinitely many
orbits (81 < 84). Can we understand them geometrically?

Reduction. Can contract Ω ∈ ∧3C9 by a linear form to get a
skew-symmetric 2-form. Define

HΩ := {P ∈ P∨, rank Ω(P, •, •) ≤ 6},

AΩ := {P ∈ P∨, rank Ω(P, •, •) ≤ 4}.

These are Pfaffian loci in P∨ = P(C9)∗ ' P8.

Theorem (Gruson-Sam-Weyman 2013)

For Ω generic, HΩ is a cubic hypersurface, with singular locus AΩ,
a smooth abelian surface.
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3-forms in 9, 2: Coble cubics

 One recovers a classical situation!

Definition. An abelian surface A = C2/Λ is principally polarized if
endowed with an ample line bundle L such that h0(A, L) = 1.

Then h0(A, L⊗n) = n2 and

1 the sections of L⊗2 define a degree 2 morphism A→ H ⊂ P3,
with H a singular quartic surface,

2 the sections of L⊗3 define an embedding A ↪→ P8.
Coble (1918): A is the singular locus of a unique cubic
hypersurface.

3 A is the Jacobian of a genus two curve C , and the Coble
cubic can be interpreted in terms of moduli spaces of vector
bundles on C (Narasimhan-Ramanan 1984, Laszlo 1996,
Beauville 2003, Ortega 2005, Dolgachev-Minh 2007).
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3-forms in 9 variables, 3: through the looking-glass

Dual reduction. Suppose U1 ⊂ C9 is a line. We can mod out
∧3C9 by U1 to get ∧3(C9/U1) ' ∧3C8. Here GL(8,C) has finitely
many orbits (22), starting from:

Y ′8 · · ·

Y0 = ∧3C8 // Y1
// Y3

// Y4

66mmmmmmmmmmmmmmm // Y6
// Y8 · · ·

We can thus define the ODL associated to Ω ∈ ∧3C9:

Dk := DYk
(Ω) = {U1 ⊂ C9, ΩmodU1 ∈ Yk} ⊂ P = P8.

For Ω generic the locus Dk has codimension k .
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3-forms in 9 variables, 4

Facts

1 D8 = 81 points in P8, while D ′8 = ∅.
2 D6 is a non normal surface, singular along D8.

3 D4 is singular along D6 and has trivial canonical bundle.

4 D1 is a sextic hypersurface, dual to the Coble cubic.

Suggests to focus on D4 and its desingularization, deduced from a
Kempf collapsing of Y4:

E
p

{{ww
ww
ww
ww
w

q

&&MM
MMM

MMM
MMM

M

F2,5(C8) Y4 ⊂ ∧3C8,

where E(U2 ⊂ U5 ⊂ C8) = ∧3U5 + U2 ∧ U5 ∧ C8 ⊂ ∧3C8.
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3-forms in 9 variables, 5

This induces a desingularization

X4

i

zzuu
uu
uu
uu
u

π

%%KK
KKK

KKK
KKK

F1,3,6(C9) D4 ⊂ P.

Theorem

X4 is a hyperKähler fourfold. More precisely, X4 ' Kum2(AΩ), the
generalized Kummer fourfold associated to the abelian surface AΩ.

Beauville: Hilbn(A) is a smooth manifold of dimension 2n, and the
addition law on A induces a fibration Hilbn(A)→ A, such that
every fiber Kumn−1(A) is a hyperKähler manifold.
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3-forms in 9 variables, 6

Why do we find that exciting? Because:

HyperKähler manifolds are rare!
Only two families known in dimension four, but not known if
there exist finitely or infinitely many families.

Very few projective models of generalized Kummer fourfolds
had been described before.

We can deduce a nice geometric description of the addition
law on AΩ.

Main observation

Three general points P,Q,R ∈ AΩ ⊂ P∨ are such that
P + Q + R = O, a fixed origin in AΩ, if and only if

Ω(P,Q, •) = Ω(P,R, •) = Ω(Q,R, •)

give the same point in P.
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3-forms in 9 variables, conclusion

Starting from two points P,Q on AΩ, we thus find R ∈ AΩ as
above by solving a problem in linear algebra. Then we do the same
with O,R to find the point S = P + Q.

Consequences: D8 = 3-torsion points in AΩ; D6 ⊂ Hilb3(AΩ) is
made of schemes with non reduced support, normalization is AΩ.
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Thank You!
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