Introduction to Orbital Degeneracy Loci

Laurent Manivel

Toulouse Mathematics Institute

July 10, 2020 Representation Theory Seminar, Bonn

Laurent Manivel Introduction to Orbital Degeneracy Loci

イロト イヨト イヨト

э

Introduction

Motivations

 Main goal: Construct interesting varieties.

- In complex algebraic geometry: classification problems.
- Need to construct varieties of a given class. Typically Fano varieties.
- Very special varieties. For example with particular symmetries.

MAIN INGREDIENTS:

- Vector bundles: very classical.
- Lie theory, representations of algebraic groups: even more classical.

 \rightsquigarrow New tools by putting them together.

・ロト ・ 同ト ・ ヨト ・ ヨト

Basics on vector bundles

Let *E* be a rank *e vector bundle* over a variety *X*. So $\pi : E \to X$ is locally trivial and each fiber $E_x = \pi^{-1}(x)$ is identified with a fixed vector space *F*.

Examples. T_X tangent bundle, rank = dimension of X, $K_X = \det(\Omega_X) = \det(T_X)^*$ canonical bundle (fundamental invariant), rank one i.e. *line bundle*.

A section s of E is a map $s: X \to E$ such that $\pi \circ s = id_X$, i.e. s(x) is a point in the vector space E_x . Its zero-locus is

$$Z(s) := \{x \in X, \ s(x) = 0 \in E_x\}.$$

Locally over $U \subset X$, decompose $s(x) = s_1(x)f_1 + \cdots + s_e(x)f_e$, for f_1, \ldots, f_e a basis of F. Then Z = Z(s) is defined by the vanishing of the e functions $s_1(x), \ldots, s_e(x)$.

Zero Loci of sections, basic examples

If everywhere transverse, then:

- Z is smooth (possibly empty),
- the codimension of Z is equal to the rank of E,
- the structure sheaf of Z can be resolved by a Koszul complex

$$0 \to \wedge^{e} E^{*} \xrightarrow{s} \cdots \to E^{*} \xrightarrow{s} \mathcal{O}_{X} \to \mathcal{O}_{Z} \to 0,$$

• the canonical bundle of Z is given by the *adjunction formula*

$$K_Z = K_X \otimes \det(E)_{|Z}.$$

Applications.

Global construction of many interesting varieties. With access to lots of informations on their geometry.

4 日 ト 4 周 ト 4 国 ト 4 国 ト

Zero Loci of sections, more examples

Basic examples.

- Zero loci of sections of line bundles (rank one) are hypersurfaces.
- On the Grassmannian X = G(r, n), let T be the tautological vector bundle (T_x = U if x represents U ⊂ ℂⁿ). A linear form φ on ℂⁿ defines a section s_φ of the dual vector bundle T^{*}, and

$$Z(s_{\phi}) = \{U \subset Ker(\phi)\} \simeq G(r, n-1).$$

•
$$X = G(r, n), E = \wedge^2 T^*.$$

A skew-symmetric two-form ω on \mathbb{C}^n gives a section s_ω , and

$$Z(s_{\omega}) = IG_{\omega}(r, n)$$

is an *isotropic Grassmannian*. For *n* even, ω of maximal rank, this is again a homogeneous variety, under $Sp(\omega)$.

(日)

Zero Loci of sections, more and more examples

More examples

•
$$X = G(4,7), E = \wedge^3 T^*.$$

A skew-symmetric three-form Ω defines a section s_{Ω} , and for Ω general $Z = Z(s_{\Omega})$ is an eightfold with $K_Z = \mathcal{O}_Z(-4)$. This is a Fano variety, quasi-homogeneous under G_2 , actually a smooth completion of the symmetric space $G_2/SO_3 \times SO_3$.

• $X = G(3,7), E = \wedge^2 T^* \oplus \wedge^2 T^* \oplus \wedge^2 T^*.$ A triple $\theta = (\theta_1, \theta_2, \theta_3)$ of skew-symmetric two-forms defines a section s_{θ} , and

$$Z=Z(s_{\theta})=\mathit{IG}_{\theta_1}(3,7)\cap \mathit{IG}_{\theta_2}(3,7)\cap \mathit{IG}_{\theta_3}(3,7)$$

is a threefold with $K_Z = \mathcal{O}_Z(-1)$: a prime Fano threefold. Actually a whole family of such threefolds.

Zero Loci of sections

Still more examples

• $X = G(2,6), E = S^2 T^* \oplus S^2 T^*$. A pair of quadrics $q = (q_1, q_2)$ in 6 variables defines a section s_q , and $Z = Z(s_q)$ is a surface parametrizing projective lines contained in $Q_1 \cap Q_2 \subset \mathbb{P}^5$.

 \rightsquigarrow $K_Z = \mathcal{O}_Z$: Z is an Abelian surface (Reid 1972).

• $X = G(2,6), E = S^3 T^*$.

A degree three polynomial P in 6 variables defines a section s_P , and $Z = Z(s_P)$ is a fourfold parametrizing projective lines in the cubic hypersurface $X(P) \subset \mathbb{P}^5$.

 \rightsquigarrow $K_Z = \mathcal{O}_Z$: Z is hyperKähler (Beauville-Donagi 1985).

Zero Loci of sections, constraints

More restricted goals

- Construct Fano manifolds, $K_Z < 0$ (finite problem).
- Construct Calabi-Yau and hyperKähler manifolds, $K_Z = 0$.

Constraints: double bind!

- If E has enough sections, then det(E) > 0.
- We want $K_Z = K_X \otimes \det(E)_{|Z} \leq 0$, so need $K_X < 0$.
- So we need *low rank vector* bundles on Fano manifolds, *positive but not too much!*
- Classical conjecture: low rank vector bundles on projective spaces are split (sums of lines bundles).

 \rightsquigarrow Need more flexibility!

Determinantal Loci

Suppose E = Hom(F, G) for two vector bundles F, G on X. A section of E is a morphism $\varphi : F \to G$, with variable rank. So one defines the *k*-th *determinantal locus*

$$D_k(\varphi) := \{x \in X, \operatorname{rank}(\varphi_x) \le k\}.$$

For φ general, $D_k = D_k(\varphi)$ is no longer smooth, but

- the codimension of D_k is (f k)(g k),
- the singular locus of D_k is

$$\operatorname{Sing}(D_k)=D_{k-1},$$

• if $(f - k)(g - k) < \dim(X) < (f - k + 1)(g - k + 1)$, then $D_{k-1} = \emptyset$, D_k is smooth, and ϕ has constant rank on D_k .

Determinantal Loci, continued

So there is an exact sequence

$$0 \rightarrow A \rightarrow F \stackrel{\varphi}{\rightarrow} G \rightarrow B \rightarrow 0,$$

on D_k , with $A = \operatorname{Ker}(\varphi)$ and $B = \operatorname{Coker}(\varphi)$. Then the normal bundle of D_k is N = Hom(A, B), and

$$K_{D_k} = K_{X|D_k} \otimes \det(N).$$

But K_{D_k} difficult to control: not a restriction! Exception: f = g, since then

$$\mathcal{K}_{D_k} = \mathcal{K}_X \otimes \det(\mathcal{F}^*)^{g-k} \otimes \det(\mathcal{G})^{f-k}_{|D_k}.$$

Advantage. Can construct interesting loci (CY threefolds) just from line bundles or very simple vector bundles.

For determinantal loci, we have used the fact that E = Hom(F, G) has extra structure \rightsquigarrow the rank is the invariant that describes in which stratum the section lands at any given point.

More generally: suppose that E has extra structure, encoded by some representation V of some complex Lie group G.

In technical language, we need a *G*-principal bundle $P \rightarrow X$, and $E = E_V$ is the associated bundle to *P* and the representation *V*. Then each fiber of *E* can be identified with *V*, not canonically but only up to the action of *G*.

Typical example: $G = GL(f, \mathbb{C})$ and $V = \wedge^k \mathbb{C}^f$. Then this is equivalent to asking that there exists a vector bundle F of rank f on X, such that $E \simeq \wedge^k F$.

Orbital Degeneracy Loci, definition

For a section s of E, the stratum in which s lands at a given point $x \in X$ is the G-orbit in V to which s_x belongs.

 \rightsquigarrow Suggests to define, for $Y \subset V$ any closed *G*-invariant subset,

$$D_Y(s) := \{x \in X, \ s_x \in Y \subset V \simeq E_x\}.$$

Typically, Y will be an orbit closure. In this case we get an *orbital* degeneracy locus (ODL).

Facts. For s general (transverse),

- the codimension of $D_Y(s) \subset X$ equals that of $Y \subset V$,
- the singular locus of $D_Y(s)$ is

$$\operatorname{Sing}(D_Y(s)) = D_{\operatorname{Sing}(Y)}(s).$$

Orbital Degeneracy Loci, problems

Several problems to deal with.

Problem A. Understand *G*-orbits in a *G*-representation *V*.

→ Hopeless in general! We will first restrict to *parabolic representations*, which have *finitely many* orbits.

Problem B. Describe the geometry of the *G*-orbit closures.

 \rightsquigarrow In particular, describe the singularities. Or rather, resolve the singularities.

Problem C. Construct varieties Z with $K_Z \leq 0$ as ODL, or resolutions of ODL.

 \rightsquigarrow As before, we will need to start from low rank vector bundles (possibly just line bundles) on Fano varieties.

Classification of orbits

Problem A (classification of orbits) is very classical.

G simple complex Lie group \rightsquigarrow complete classification of representations with finitely many G-orbits (Kac 1981). Most of them are *parabolic* (\simeq gradings of simple Lie algebras). Moreover, orbits have been described explicitly by various means (e.g., by normal forms).

Examples

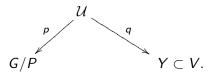
9
$$G = Gl(f, \mathbb{C}), V = \mathbb{C}^{f}$$
: two orbits \rightsquigarrow zero loci of sections.

- G = Gl(f, ℂ) × Gl(g, ℂ), V = Hom(ℂ^f, ℂ^g): orbits defined by the rank → determinantal loci of morphisms.
- $\ \, {\mathfrak S} = Gl(f,{\mathbb C}), \ V = \wedge^2 {\mathbb C}^f : \text{ rank } \rightsquigarrow \text{ Pfaffian loci.}$
- $G = Gl(f, \mathbb{C}), V = \wedge^3 \mathbb{C}^f$: finitely many orbits only for $f \leq 8$.

Descriptions of orbits

Problem B (geometry of orbits) was partially solved by Weyman & al, in terms of *Kempf collapsings*.

Method. Let $P \subset G$ be a parabolic subgroup and let $U \subset V$ be a *P*-stable subspace. The *G*-translates of *U* form a vector bundle \mathcal{U} over the flag manifold G/P.



The map q is proper, so $Y = q(\mathcal{U})$ is closed and G-stable \rightsquigarrow orbit closure. If q is birational, it is a resolution of singularities.

< ロ > < 同 > < 回 > < 回 > .

3-forms in 6 variables.

Start with \mathfrak{e}_6 , the 78-dimensional exceptional simple complex Lie algebra. The simple root α_2 defines a \mathbb{Z} -grading

$$\mathfrak{e}_6 = \mathbb{C} \oplus \wedge^3 \mathbb{C}^6 \oplus \mathfrak{gl}_6 \oplus \wedge^3 \mathbb{C}^6 \oplus \mathbb{C}.$$

Orbits of $GL(6, \mathbb{C})$ in $\wedge^3 \mathbb{C}^6$ are traces of nilpotent orbits in $\mathfrak{e}_6 \rightsquigarrow$ finiteness!

イロト イボト イヨト イヨト

3-forms in 6 variables, continued

Let $G = GL(6, \mathbb{C})$ act on $V = \wedge^3 \mathbb{C}^6$. The orbit closures are

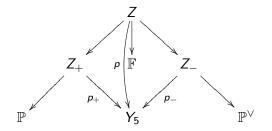
$$Y_{20} = \{0\} \subset Y_{10} \subset Y_5 \subset Y_1 \subset Y_0 = V.$$

The orbits have the following representatives $(e_{ijk} = e_i \wedge e_j \wedge e_k)$:

\mathcal{O}_{10}	e ₁₂₃	decomposable
\mathcal{O}_5	$e_{123} + e_{145}$	partially decomposable
\mathcal{O}_1	$e_{124} + e_{135} + e_{236}$	tangent or dual quartic
\mathcal{O}_{0}	$e_{123} + e_{456}$	generic

Taking closure: $Y_5 = \overline{\mathcal{O}}_5 = \mathcal{O}_5 \cup \mathcal{O}_{10} \cup \mathcal{O}_{20} = \mathcal{O}_5 \cup Y_{10}.$

The variety Y_5 is singular along Y_{10} . One can resolve the singularities by three Kempf collapsings p, p_+, p_- .



Here $\mathbb{P} = \mathbb{P}(\mathbb{C}^6)$, $\mathbb{P}^{\vee} = \mathbb{P}(\mathbb{C}^6)^*$ and $\mathbb{F} \subset \mathbb{P} \times \mathbb{P}^{\vee}$ is the flag variety parametrizing pairs (line \subset hyperplane).

< ロ > < 同 > < 回 > < 回 >

The desingularizations Z, Z_+, Z_- are total spaces of homogeneous vector bundles $\mathcal{E}, \mathcal{E}_+, \mathcal{E}_-$, where

$$egin{aligned} \mathcal{E}_+(U_1) &= U_1 \wedge (\wedge^2 \mathbb{C}^6), \qquad \mathcal{E}_-(U_5) &= \wedge^3 U_5, \ && \mathcal{E}(U_1 \subset U_5) = U_1 \wedge (\wedge^2 U_5). \end{aligned}$$

Observations.

- \$p_{\pm}^{-1}(e_{123}) \simeq \mathbb{P}^2\$, so \$p_{\pm}\$ is a small contraction,
 \$p^{-1}(e_{123}) \simeq \mathbb{P}^2 \times \mathbb{P}^2\$, so \$p\$ is a divisorial contraction,
- (3) the determinant of \mathcal{E}_{-} is

$$\det(\mathcal{E}_{-}) = \wedge^{10}(\wedge^{3}U_{5}) = \det(U_{5})^{6} = K_{\mathbb{P}^{\vee}},$$

and therefore p_{-} (and p_{+} as well) is a *crepant resolution*.

化白豆 化氟医化医医医化医医

Resolving the structure sheaf

By pushing forward Koszul complexes from Z, Weyman & al showed that the structure sheaf of Y_5 admits a very beautiful self-dual resolution

$$0 \to \mathcal{O}_V(-10) \to V \otimes \mathcal{O}_V(-7) \to \mathfrak{sl}_6 \otimes \mathcal{O}_V(-6) \to \cdots$$
$$\cdots \to \mathfrak{sl}_6 \otimes \mathcal{O}_V(-4) \to V \otimes \mathcal{O}_V(-3) \to \mathcal{O}_V \to \mathcal{O}_{Y_5} \to 0.$$

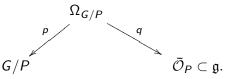
Allows to compute the Hilbert function, etc.

 \rightsquigarrow very complete understanding, useful for applications to Problem C.

Many parabolic representations and many orbits in each of them \rightsquigarrow rich playground.

Only a small proportion have crepant resolutions.

Representations with infinitely many orbits are also interesting. Typically:



Nilpotent orbits \mathcal{O}_P obtained from parabolic subgroups P of G are called Richardson orbits. If q is birational, it is automatically crepant since $K_{G/P} = \det(\Omega_{G/P})!$

Problem C can now be solved.

Suppose we have a rank 6 vector bundle F on a variety X, and a generic section s of $E = \wedge^3 F$. The ODL $D = D_{Y_5}(s)$ is the locus of points $x \in X$ where $s_x \in \wedge^3 F_x$ becomes partially decomposable.

- D has codimension 5, and is singular in codimension 5,
- D admits explicit resolutions of singularities,
- D is Gorenstein with canonical bundle

$$K_D = K_X \otimes (\det F)^5_{|D}.$$

For example we can construct (a dozen of) Calabi-Yau fourfolds from (X, F), dim(X) = 9, rank(F) = 6, $K_X \otimes (\det F)^5$ trivial.

The action of $G = GL(9, \mathbb{C})$ on $V = \wedge^3 \mathbb{C}^9$ has infinitely many orbits (81 < 84). Can we understand them geometrically?

Reduction. Can contract $\Omega \in \wedge^3 \mathbb{C}^9$ by a linear form to get a skew-symmetric 2-form. Define

$$egin{aligned} &\mathcal{H}_\Omega := \{ P \in \mathbb{P}^ee, \mathrm{rank} \; \Omega(P, ullet, ullet) \leq 6 \}, \ &\mathcal{A}_\Omega := \{ P \in \mathbb{P}^ee, \mathrm{rank} \; \Omega(P, ullet, ullet) \leq 4 \}. \end{aligned}$$

These are Pfaffian loci in $\mathbb{P}^{\vee} = \mathbb{P}(\mathbb{C}^9)^* \simeq \mathbb{P}^8$.

Theorem (Gruson-Sam-Weyman 2013)

For Ω generic, H_{Ω} is a cubic hypersurface, with singular locus A_{Ω} , a smooth **abelian surface**.

3-forms in 9, 2: Coble cubics

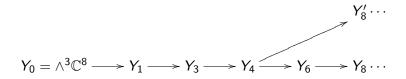
 \rightsquigarrow One recovers a classical situation!

Definition. An abelian surface $A = \mathbb{C}^2/\Lambda$ is *principally polarized* if endowed with an ample line bundle *L* such that $h^0(A, L) = 1$. Then $h^0(A, L^{\otimes n}) = n^2$ and

- the sections of $L^{\otimes 2}$ define a degree 2 morphism $A \to H \subset \mathbb{P}^3$, with H a singular quartic surface,
- the sections of L^{⊗3} define an embedding A → P⁸.
 Coble (1918): A is the singular locus of a unique cubic hypersurface.
- A is the Jacobian of a genus two curve C, and the Coble cubic can be interpreted in terms of moduli spaces of vector bundles on C (Narasimhan-Ramanan 1984, Laszlo 1996, Beauville 2003, Ortega 2005, Dolgachev-Minh 2007).

3-forms in 9 variables, 3: through the looking-glass

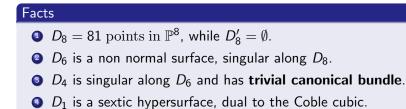
Dual reduction. Suppose $U_1 \subset \mathbb{C}^9$ is a line. We can mod out $\wedge^3 \mathbb{C}^9$ by U_1 to get $\wedge^3 (\mathbb{C}^9/U_1) \simeq \wedge^3 \mathbb{C}^8$. Here $GL(8, \mathbb{C})$ has finitely many orbits (22), starting from:



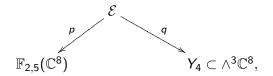
We can thus define the ODL associated to $\Omega \in \wedge^3 \mathbb{C}^9$:

 $D_k := D_{Y_k}(\Omega) = \{U_1 \subset \mathbb{C}^9, \ \Omega \mod U_1 \in Y_k\} \subset \mathbb{P} = \mathbb{P}^8.$

For Ω generic the locus D_k has codimension k.



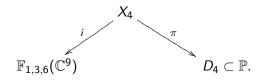
Suggests to focus on D_4 and its desingularization, deduced from a Kempf collapsing of Y_4 :



where $\mathcal{E}(U_2 \subset U_5 \subset \mathbb{C}^8) = \wedge^3 U_5 + U_2 \wedge U_5 \wedge \mathbb{C}^8 \subset \wedge^3 \mathbb{C}^8$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

This induces a desingularization



Theorem

 X_4 is a hyperKähler fourfold. More precisely, $X_4 \simeq Kum^2(A_{\Omega})$, the generalized Kummer fourfold associated to the abelian surface A_{Ω} .

Beauville: $Hilb^n(A)$ is a smooth manifold of dimension 2n, and the addition law on A induces a fibration $Hilb^n(A) \to A$, such that every fiber $Kum^{n-1}(A)$ is a hyperKähler manifold.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why do we find that exciting? Because:

- HyperKähler manifolds are rare! Only two families known in dimension four, but not known if there exist finitely or infinitely many families.
- Very few projective models of generalized Kummer fourfolds had been described before.
- We can deduce a nice geometric description of the addition law on A_{Ω} .

Main observation

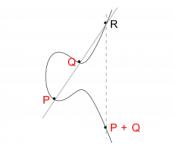
Three general points $P, Q, R \in A_{\Omega} \subset \mathbb{P}^{\vee}$ are such that P + Q + R = O, a fixed origin in A_{Ω} , if and only if

$$\Omega(P,Q,\bullet)=\Omega(P,R,\bullet)=\Omega(Q,R,\bullet)$$

give the same point in \mathbb{P} .

3-forms in 9 variables, conclusion

Starting from two points P, Q on A_{Ω} , we thus find $R \in A_{\Omega}$ as above by solving a problem in linear algebra. Then we do the same with O, R to find the point S = P + Q.



Consequences: $D_8 = 3$ -torsion points in A_{Ω} ; $D_6 \subset Hilb^3(A_{\Omega})$ is made of schemes with non reduced support, normalization is A_{Ω} .

・ 同 ト ・ ヨ ト ・ ヨ ト

References.

Orbital degeneracy loci and applications, with V. Benedetti, S.A. Filippini, F. Tanturri, 36 pages, arXiv:1704.01436, to appear in Annali Scuola Normale di Pisa.

Orbital degeneracy loci II : Gorenstein orbits, with V. Benedetti, S.A. Filippini, F. Tanturri, 40 pages, arXiv:1802.08430, to appear in IMRN.

The geometry of the Coble cubic and orbital degeneracy loci, with V. Benedetti and F. Tanturri, 24 pages, arXiv:1904.10848, to appear in Math. Annalen.

イロト イヨト イヨト

Thank You!

Laurent Manivel Introduction to Orbital Degeneracy Loci

ヘロト ヘ団ト ヘヨト ヘヨト

æ